{ "cells": [ { "cell_type": "markdown", "id": "771b28cd", "metadata": {}, "source": [ "# Link iNaturalist observations to TRY" ] }, { "cell_type": "markdown", "id": "88fc5732", "metadata": {}, "source": [ "Link iNaturalist vascular plant observations to the previously created trait TRY summary statistics.\n", "\n", "This section covers:\n", "\n", "- Load data\n", "- Link iNat and TRY\n", "- Fuzzy merge\n", "- Log trait values\n", "- Number of observations per trait\n", "- Plot observation density after linking" ] }, { "cell_type": "markdown", "id": "624c2ea8", "metadata": {}, "source": [ "## Packages" ] }, { "cell_type": "code", "execution_count": null, "id": "89e742b2", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import numpy as np\n", "\n", "# fuzzy matching\n", "#import rapidfuzz\n", "from rapidfuzz import process, fuzz\n", "\n", "# plotting\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from matplotlib.colors import LogNorm, Normalize\n", "import cartopy.crs as ccrs # plot maps\n", "from matplotlib.colors import BoundaryNorm\n", "from matplotlib.ticker import MaxNLocator\n", "from mpl_toolkits.axes_grid1 import make_axes_locatable" ] }, { "cell_type": "markdown", "id": "c24eac1e", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "markdown", "id": "39b5bbf6", "metadata": {}, "source": [ "We load the iNaturalist vascular plant observations and the TRY summary stats per species." ] }, { "cell_type": "code", "execution_count": 2, "id": "1a1e8705", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gbifIDscientificNamedecimalLatitudedecimalLongitudeeventDatedateIdentified
01229615436Commelina communis35.987483-79.0575462013-07-07T00:00:002013-07-07T20:33:11
11802610589Blitum capitatum40.320259-105.6048562013-08-24T13:30:002019-09-02T01:11:54
21212005116Passiflora vitifolia23.189257-106.4049242014-03-18T12:49:372017-02-23T17:24:07
\n", "
" ], "text/plain": [ " gbifID scientificName decimalLatitude decimalLongitude \\\n", "0 1229615436 Commelina communis 35.987483 -79.057546 \n", "1 1802610589 Blitum capitatum 40.320259 -105.604856 \n", "2 1212005116 Passiflora vitifolia 23.189257 -106.404924 \n", "\n", " eventDate dateIdentified \n", "0 2013-07-07T00:00:00 2013-07-07T20:33:11 \n", "1 2013-08-24T13:30:00 2019-09-02T01:11:54 \n", "2 2014-03-18T12:49:37 2017-02-23T17:24:07 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat = pd.read_csv(\"Data/iNat/observations.csv\")\n", "iNat.head(3)\n" ] }, { "cell_type": "markdown", "id": "a1a87c9e", "metadata": {}, "source": [ "Load trait measurments with consolidated species name:" ] }, { "cell_type": "code", "execution_count": 3, "id": "bbe8cd42", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AccSpeciesNameDispersal unit lengthLeaf AreaSLALeaf CLDMCLeaf fresh massLeaf N per areaLeaf N per massLeaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
0AaNaNNaN9.433962NaNNaNNaN2.798426.4NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1Aaronsohnia pubescensNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.2NaNNaNNaNNaNNaNNaN
\n", "
" ], "text/plain": [ " AccSpeciesName Dispersal unit length Leaf Area SLA Leaf C \\\n", "0 Aa NaN NaN 9.433962 NaN \n", "1 Aaronsohnia pubescens NaN NaN NaN NaN \n", "\n", " LDMC Leaf fresh mass Leaf N per area Leaf N per mass Leaf delta15N \\\n", "0 NaN NaN 2.7984 26.4 NaN \n", "1 NaN NaN NaN NaN NaN \n", "\n", " Leaf N P ratio Leaf P Plant Height Seed mass Seed length \\\n", "0 NaN NaN NaN NaN NaN \n", "1 NaN NaN 0.2 NaN NaN \n", "\n", " Seeds per rep. unit Stem conduit density SSD Conduit element length \n", "0 NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "TRY = pd.read_csv(\"Data/TRY/TRY_summary_stats.csv\")\n", "TRY.head(2)" ] }, { "cell_type": "code", "execution_count": 4, "id": "4803367e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(51908, 19)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "TRY.shape" ] }, { "cell_type": "code", "execution_count": 5, "id": "efeca2cc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(14019405, 6)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat.shape" ] }, { "cell_type": "code", "execution_count": 6, "id": "c8fea929", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14019405" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check that we have only unique observation ID's\n", "iNat[\"gbifID\"].nunique()" ] }, { "cell_type": "markdown", "id": "c9f283e8", "metadata": {}, "source": [ "## Link iNaturalist and TRY" ] }, { "cell_type": "markdown", "id": "6f386db6", "metadata": {}, "source": [ "Non-fuzzy merge with TRY summary stats on **consolidated TRY species name**:\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "a07593ff", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gbifIDscientificNamedecimalLatitudedecimalLongitudeeventDatedateIdentifiedAccSpeciesNameDispersal unit lengthLeaf AreaSLA...Leaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
01229615436Commelina communis35.987483-79.0575462013-07-07T00:00:002013-07-07T20:33:11Commelina communisNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
13384000233Commelina communis42.093762-75.9236602021-08-23T13:06:062021-09-17T21:15:37Commelina communisNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
21807276585Commelina communis40.787636-73.9337282017-09-04T12:47:582017-09-04T21:58:57Commelina communisNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
\n", "

3 rows × 25 columns

\n", "
" ], "text/plain": [ " gbifID scientificName decimalLatitude decimalLongitude \\\n", "0 1229615436 Commelina communis 35.987483 -79.057546 \n", "1 3384000233 Commelina communis 42.093762 -75.923660 \n", "2 1807276585 Commelina communis 40.787636 -73.933728 \n", "\n", " eventDate dateIdentified AccSpeciesName \\\n", "0 2013-07-07T00:00:00 2013-07-07T20:33:11 Commelina communis \n", "1 2021-08-23T13:06:06 2021-09-17T21:15:37 Commelina communis \n", "2 2017-09-04T12:47:58 2017-09-04T21:58:57 Commelina communis \n", "\n", " Dispersal unit length Leaf Area SLA ... Leaf delta15N Leaf N P ratio \\\n", "0 NaN NaN NaN ... NaN 12.631579 \n", "1 NaN NaN NaN ... NaN 12.631579 \n", "2 NaN NaN NaN ... NaN 12.631579 \n", "\n", " Leaf P Plant Height Seed mass Seed length Seeds per rep. unit \\\n", "0 1.71 NaN 8.48 NaN NaN \n", "1 1.71 NaN 8.48 NaN NaN \n", "2 1.71 NaN 8.48 NaN NaN \n", "\n", " Stem conduit density SSD Conduit element length \n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "\n", "[3 rows x 25 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY = pd.merge(iNat, TRY, \n", " left_on= ['scientificName'],\n", " right_on= ['AccSpeciesName'], \n", " how='inner')\n", "iNat_TRY.head(3)" ] }, { "cell_type": "markdown", "id": "7f7635fd", "metadata": {}, "source": [ "We repeat the same with the **'original' species name** in TRY:" ] }, { "cell_type": "code", "execution_count": 8, "id": "4e459e9c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SpeciesNameDispersal unit lengthLeaf AreaSLALeaf CLDMCLeaf fresh massLeaf N per areaLeaf N per massLeaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
0(fabaceae)NaNNaN21.3385NaNNaNNaN1.57815733.150000NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1(fabaceae) 20-25oblongNaNNaNNaNNaNNaNNaN1.76145332.513864NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", "
" ], "text/plain": [ " SpeciesName Dispersal unit length Leaf Area SLA Leaf C \\\n", "0 (fabaceae) NaN NaN 21.3385 NaN \n", "1 (fabaceae) 20-25oblong NaN NaN NaN NaN \n", "\n", " LDMC Leaf fresh mass Leaf N per area Leaf N per mass Leaf delta15N \\\n", "0 NaN NaN 1.578157 33.150000 NaN \n", "1 NaN NaN 1.761453 32.513864 NaN \n", "\n", " Leaf N P ratio Leaf P Plant Height Seed mass Seed length \\\n", "0 NaN NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN \n", "\n", " Seeds per rep. unit Stem conduit density SSD Conduit element length \n", "0 NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "TRY_syn = pd.read_csv(\"Data/TRY/TRY_summary_stats_syn.csv\")\n", "TRY_syn.head(2)" ] }, { "cell_type": "markdown", "id": "215ceb74", "metadata": {}, "source": [ "Extract from TRY those observations that have not been matched:" ] }, { "cell_type": "code", "execution_count": 9, "id": "99e79d42", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2541013, 6)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# filter for observations not in merged dataframe:\n", "iNat_rest = iNat[~iNat.gbifID.isin(iNat_TRY['gbifID'])]\n", "iNat_rest.shape" ] }, { "cell_type": "code", "execution_count": 10, "id": "8d75596f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gbifIDscientificNamedecimalLatitudedecimalLongitudeeventDatedateIdentifiedSpeciesNameDispersal unit lengthLeaf AreaSLA...Leaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
01802610589Blitum capitatum40.320259-105.6048562013-08-24T13:30:002019-09-02T01:11:54Blitum capitatumNaNNaNNaN...NaNNaNNaN0.45NaNNaNNaNNaNNaNNaN
12283078677Blitum capitatum50.744232-120.5113032019-06-29T17:50:282019-09-02T01:16:41Blitum capitatumNaNNaNNaN...NaNNaNNaN0.45NaNNaNNaNNaNNaNNaN
22864818488Blitum capitatum53.938056-106.0685532020-08-22T12:22:092020-08-22T19:13:24Blitum capitatumNaNNaNNaN...NaNNaNNaN0.45NaNNaNNaNNaNNaNNaN
\n", "

3 rows × 25 columns

\n", "
" ], "text/plain": [ " gbifID scientificName decimalLatitude decimalLongitude \\\n", "0 1802610589 Blitum capitatum 40.320259 -105.604856 \n", "1 2283078677 Blitum capitatum 50.744232 -120.511303 \n", "2 2864818488 Blitum capitatum 53.938056 -106.068553 \n", "\n", " eventDate dateIdentified SpeciesName \\\n", "0 2013-08-24T13:30:00 2019-09-02T01:11:54 Blitum capitatum \n", "1 2019-06-29T17:50:28 2019-09-02T01:16:41 Blitum capitatum \n", "2 2020-08-22T12:22:09 2020-08-22T19:13:24 Blitum capitatum \n", "\n", " Dispersal unit length Leaf Area SLA ... Leaf delta15N Leaf N P ratio \\\n", "0 NaN NaN NaN ... NaN NaN \n", "1 NaN NaN NaN ... NaN NaN \n", "2 NaN NaN NaN ... NaN NaN \n", "\n", " Leaf P Plant Height Seed mass Seed length Seeds per rep. unit \\\n", "0 NaN 0.45 NaN NaN NaN \n", "1 NaN 0.45 NaN NaN NaN \n", "2 NaN 0.45 NaN NaN NaN \n", "\n", " Stem conduit density SSD Conduit element length \n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "\n", "[3 rows x 25 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# non-fuzzy merge with TRY summary stats on original TRY species name:\n", "\n", "iNat_TRY_syn = pd.merge(iNat_rest, TRY_syn, \n", " left_on= ['scientificName'],\n", " right_on= ['SpeciesName'], \n", " how='inner')\n", "iNat_TRY_syn.head(3)" ] }, { "cell_type": "code", "execution_count": 11, "id": "497c8e56", "metadata": {}, "outputs": [], "source": [ "subsets = [iNat_TRY, iNat_TRY_syn]\n", "\n", "iNat_TRY_all = pd.concat(subsets)" ] }, { "cell_type": "code", "execution_count": 12, "id": "95f3411a", "metadata": {}, "outputs": [], "source": [ "iNat_TRY_all = iNat_TRY_all.drop(['AccSpeciesName', 'SpeciesName'], axis = 1)" ] }, { "cell_type": "code", "execution_count": 13, "id": "622ea69e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gbifIDscientificNamedecimalLatitudedecimalLongitudeeventDatedateIdentifiedDispersal unit lengthLeaf AreaSLALeaf C...Leaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
01229615436Commelina communis35.987483-79.0575462013-07-07T00:00:002013-07-07T20:33:11NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
13384000233Commelina communis42.093762-75.9236602021-08-23T13:06:062021-09-17T21:15:37NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
21807276585Commelina communis40.787636-73.9337282017-09-04T12:47:582017-09-04T21:58:57NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
\n", "

3 rows × 24 columns

\n", "
" ], "text/plain": [ " gbifID scientificName decimalLatitude decimalLongitude \\\n", "0 1229615436 Commelina communis 35.987483 -79.057546 \n", "1 3384000233 Commelina communis 42.093762 -75.923660 \n", "2 1807276585 Commelina communis 40.787636 -73.933728 \n", "\n", " eventDate dateIdentified Dispersal unit length Leaf Area \\\n", "0 2013-07-07T00:00:00 2013-07-07T20:33:11 NaN NaN \n", "1 2021-08-23T13:06:06 2021-09-17T21:15:37 NaN NaN \n", "2 2017-09-04T12:47:58 2017-09-04T21:58:57 NaN NaN \n", "\n", " SLA Leaf C ... Leaf delta15N Leaf N P ratio Leaf P Plant Height \\\n", "0 NaN NaN ... NaN 12.631579 1.71 NaN \n", "1 NaN NaN ... NaN 12.631579 1.71 NaN \n", "2 NaN NaN ... NaN 12.631579 1.71 NaN \n", "\n", " Seed mass Seed length Seeds per rep. unit Stem conduit density SSD \\\n", "0 8.48 NaN NaN NaN NaN \n", "1 8.48 NaN NaN NaN NaN \n", "2 8.48 NaN NaN NaN NaN \n", "\n", " Conduit element length \n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "\n", "[3 rows x 24 columns]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_all.head(3)" ] }, { "cell_type": "code", "execution_count": 14, "id": "1305f0a7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(11806220, 24)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_all.shape" ] }, { "cell_type": "code", "execution_count": 15, "id": "2ccbb4f1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "11806220" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_all[\"gbifID\"].nunique()" ] }, { "cell_type": "code", "execution_count": 16, "id": "dff172e1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2213185, 6)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# agian filter for observations not in merged dataframe:\n", "iNat_rest_2 = iNat[~iNat.gbifID.isin(iNat_TRY_all['gbifID'])]\n", "iNat_rest_2.shape" ] }, { "cell_type": "markdown", "id": "aa4af241", "metadata": {}, "source": [ "Check how much was matched:" ] }, { "cell_type": "code", "execution_count": 17, "id": "7052c26d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "iNat species:\n", "90820\n", "TRY consolidated species:\n", "51908\n", "TRY original species:\n", "61180\n", "species merged:\n", "27783\n", "iNat species not merged:\n", "63037\n", "percentage of iNat observations linked with at least one TRY trait:\n", "0.8421341704587321\n" ] } ], "source": [ "print('iNat species:')\n", "print(iNat[\"scientificName\"].nunique())\n", "print('TRY consolidated species:')\n", "print(TRY[\"AccSpeciesName\"].nunique())\n", "print('TRY original species:')\n", "print(TRY_syn[\"SpeciesName\"].nunique())\n", "print('species merged:')\n", "print(iNat_TRY_all[\"scientificName\"].nunique())\n", "print('iNat species not merged:')\n", "print(iNat_rest_2[\"scientificName\"].nunique())\n", "\n", "# percentage of iNat observations linked with at least one TRY trait\n", "print('percentage of iNat observations linked with at least one TRY trait:')\n", "print(len(iNat_TRY_all)/len(iNat))" ] }, { "cell_type": "markdown", "id": "afde0655", "metadata": {}, "source": [ "## Fuzzy merge" ] }, { "cell_type": "markdown", "id": "e7034a8b", "metadata": {}, "source": [ "Get only unique species names left in iNaturalist unmatched observations:" ] }, { "cell_type": "code", "execution_count": 18, "id": "8bb3172d", "metadata": {}, "outputs": [], "source": [ "iNat_rest_unique = iNat_rest_2.drop_duplicates(subset=['scientificName'])" ] }, { "cell_type": "markdown", "id": "98790e9a", "metadata": {}, "source": [ "Get only unique unmatched TRY species names:" ] }, { "cell_type": "code", "execution_count": 19, "id": "2e2a876b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AccSpeciesNameDispersal unit lengthLeaf AreaSLALeaf CLDMCLeaf fresh massLeaf N per areaLeaf N per massLeaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
0AaNaNNaN9.433962NaNNaNNaN2.798426.4NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2Abacaba (palm)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.0NaNNaNNaNNaNNaNNaN
4Abarema adenophorumNaN3038.000000NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.360000NaN
5Abarema alexandriNaN675.000000NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
6Abarema barbourianaNaN29.811258NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN18.4968430.456346NaN
\n", "
" ], "text/plain": [ " AccSpeciesName Dispersal unit length Leaf Area SLA Leaf C \\\n", "0 Aa NaN NaN 9.433962 NaN \n", "2 Abacaba (palm) NaN NaN NaN NaN \n", "4 Abarema adenophorum NaN 3038.000000 NaN NaN \n", "5 Abarema alexandri NaN 675.000000 NaN NaN \n", "6 Abarema barbouriana NaN 29.811258 NaN NaN \n", "\n", " LDMC Leaf fresh mass Leaf N per area Leaf N per mass Leaf delta15N \\\n", "0 NaN NaN 2.7984 26.4 NaN \n", "2 NaN NaN NaN NaN NaN \n", "4 NaN NaN NaN NaN NaN \n", "5 NaN NaN NaN NaN NaN \n", "6 NaN NaN NaN NaN NaN \n", "\n", " Leaf N P ratio Leaf P Plant Height Seed mass Seed length \\\n", "0 NaN NaN NaN NaN NaN \n", "2 NaN NaN 15.0 NaN NaN \n", "4 NaN NaN NaN NaN NaN \n", "5 NaN NaN NaN NaN NaN \n", "6 NaN NaN NaN NaN NaN \n", "\n", " Seeds per rep. unit Stem conduit density SSD Conduit element length \n", "0 NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN \n", "4 NaN NaN 0.360000 NaN \n", "5 NaN NaN NaN NaN \n", "6 NaN 18.496843 0.456346 NaN " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.options.mode.chained_assignment = None\n", "\n", "TRY = pd.read_csv(\"Data/TRY/TRY_summary_stats.csv\")\n", "TRY_alt = pd.read_csv(\"Data/TRY/TRY_summary_stats_syn.csv\")\n", "\n", "TRY_rest = TRY[~TRY.AccSpeciesName.isin(iNat_TRY_all['scientificName'])]\n", "TRY_alt_rest = TRY_alt[~TRY_alt.SpeciesName.isin(iNat_TRY_all['scientificName'])]\n", "\n", "TRY_alt_rest.rename(columns = {'SpeciesName':'AccSpeciesName'}, inplace = True)\n", "\n", "\n", "TRY_R = pd.concat([TRY_rest, TRY_alt_rest])\n", "TRY_rest_unique = TRY_R.drop_duplicates(subset=['AccSpeciesName'])\n", "\n", "TRY_rest_unique.head()" ] }, { "cell_type": "code", "execution_count": 20, "id": "9ded70d8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123
0Sambucus ceruleaSambucus caerulea96.96969742779
1Anemonoides sylvestrisAnemone sylvestris90.0000003146
2Elymus hystrixElymus histrix92.85714320225
3Euphorbia enterophoraEuphorbia eriophora90.00000019508
4Tanacetum partheniifoliumTanacetum parthenifolium97.95918447633
\n", "
" ], "text/plain": [ " 0 1 2 3\n", "0 Sambucus cerulea Sambucus caerulea 96.969697 42779\n", "1 Anemonoides sylvestris Anemone sylvestris 90.000000 3146\n", "2 Elymus hystrix Elymus histrix 92.857143 20225\n", "3 Euphorbia enterophora Euphorbia eriophora 90.000000 19508\n", "4 Tanacetum partheniifolium Tanacetum parthenifolium 97.959184 47633" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# define choices and queries\n", "# this might take a little while\n", "\n", "choices = TRY_rest_unique[\"AccSpeciesName\"].apply(str)\n", "queries = iNat_rest_unique[\"scientificName\"]\n", "\n", "\n", "score_sort = [(x,) + i\n", " for x in queries\n", " for i in process.extract(x, choices, score_cutoff=90, scorer=fuzz.token_sort_ratio) ]\n", "\n", "fuzzy_matches = pd.DataFrame(score_sort)\n", "fuzzy_matches.head()" ] }, { "cell_type": "markdown", "id": "4a814f9d", "metadata": {}, "source": [ "Save fuzzy match to ```.csv```:" ] }, { "cell_type": "code", "execution_count": 21, "id": "b90a739b", "metadata": {}, "outputs": [], "source": [ "fuzzy_matches.to_csv(\"Data/fuzzy_matches.csv\", sep = \"\\t\",index=False)" ] }, { "cell_type": "markdown", "id": "9b5e8e1c", "metadata": {}, "source": [ "Reload fuzzy matches:" ] }, { "cell_type": "code", "execution_count": 22, "id": "8f7ef84b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123
0Sambucus ceruleaSambucus caerulea96.96969742779
1Anemonoides sylvestrisAnemone sylvestris90.0000003146
2Elymus hystrixElymus histrix92.85714320225
3Euphorbia enterophoraEuphorbia eriophora90.00000019508
4Tanacetum partheniifoliumTanacetum parthenifolium97.95918447633
\n", "
" ], "text/plain": [ " 0 1 2 3\n", "0 Sambucus cerulea Sambucus caerulea 96.969697 42779\n", "1 Anemonoides sylvestris Anemone sylvestris 90.000000 3146\n", "2 Elymus hystrix Elymus histrix 92.857143 20225\n", "3 Euphorbia enterophora Euphorbia eriophora 90.000000 19508\n", "4 Tanacetum partheniifolium Tanacetum parthenifolium 97.959184 47633" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fuzzy_matches = pd.read_csv(\"Data/fuzzy_matches.csv\", sep = \"\\t\")\n", "fuzzy_matches.head()" ] }, { "cell_type": "markdown", "id": "e216cc43", "metadata": {}, "source": [ "Add new names to unmatched iNaturalist observations: ```iNat_rest_2``` with ```fuzzy_matches```\n" ] }, { "cell_type": "code", "execution_count": 23, "id": "0a3154ef", "metadata": {}, "outputs": [], "source": [ "fuzzy_matches.rename(columns = {'0':'scientificName'}, inplace = True)\n", "fuzzy_matches.rename(columns = {'1':'fuzzyName'}, inplace = True)\n", "iNat_rest_fuzzy = pd.merge(iNat_rest_2, fuzzy_matches, on='scientificName', how='inner')" ] }, { "cell_type": "markdown", "id": "dbe44fd5", "metadata": {}, "source": [ "Merge with TRY:" ] }, { "cell_type": "code", "execution_count": 24, "id": "28e0b01c", "metadata": {}, "outputs": [], "source": [ "TRY = pd.read_csv(\"Data/TRY/TRY_summary_stats.csv\")\n", "TRY_alt = pd.read_csv(\"Data/TRY/TRY_summary_stats_syn.csv\")\n", "\n", "TRY.rename(columns = {'AccSpeciesName':'fuzzyName'}, inplace = True)\n", "iNat_TRY_fuzzy_1 = pd.merge(iNat_rest_fuzzy, TRY, on='fuzzyName', how='inner')\n", "iNat_TRY_fuzzy_rest = iNat_rest_fuzzy[~iNat_rest_fuzzy.gbifID.isin(iNat_TRY_fuzzy_1['gbifID'])]\n", "iNat_TRY_fuzzy_1= iNat_TRY_fuzzy_1.drop(columns=[\"fuzzyName\", \"2\", \"3\"])\n", "\n", "TRY_alt.rename(columns = {'SpeciesName':'fuzzyName'}, inplace = True)\n", "iNat_TRY_fuzzy_2 = pd.merge(iNat_TRY_fuzzy_rest, TRY_alt, on='fuzzyName', how='inner')\n", "iNat_TRY_fuzzy_2= iNat_TRY_fuzzy_2.drop(columns=[\"fuzzyName\", \"2\", \"3\"])" ] }, { "cell_type": "code", "execution_count": 25, "id": "2fc3e073", "metadata": {}, "outputs": [], "source": [ "# merge fuzzy-consolidated species name match and fuzzy-original match\n", "frames = [iNat_TRY_fuzzy_1, iNat_TRY_fuzzy_2]\n", "\n", "iNat_TRY_fuzzy_merge = pd.concat(frames)" ] }, { "cell_type": "code", "execution_count": 26, "id": "10267a5c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9933762301286904" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_fuzzy_merge['gbifID'].nunique()/len(iNat_TRY_fuzzy_merge['gbifID'])" ] }, { "cell_type": "markdown", "id": "c4d1090d", "metadata": {}, "source": [ "Drop iNat observation duplicates in fuzzy matches, keeping the row with the least NaN" ] }, { "cell_type": "code", "execution_count": 27, "id": "94d8d467", "metadata": {}, "outputs": [], "source": [ "iNat_TRY_fuzzy_merge_2 = (iNat_TRY_fuzzy_merge.assign(counts=iNat_TRY_fuzzy_merge.count(axis=1))\n", " .sort_values(['gbifID', 'counts'])\n", " .drop_duplicates('gbifID', keep='last')\n", " .drop('counts', axis=1))" ] }, { "cell_type": "code", "execution_count": 28, "id": "3bbbbc6c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(89828, 24)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_fuzzy_merge.shape" ] }, { "cell_type": "code", "execution_count": 29, "id": "daba3143", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(89233, 24)" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_fuzzy_merge_2.shape" ] }, { "cell_type": "markdown", "id": "5cfce3e9", "metadata": {}, "source": [ "Concatenate to make final dataframe:" ] }, { "cell_type": "code", "execution_count": 30, "id": "b696e1f9", "metadata": {}, "outputs": [], "source": [ "frames = [iNat_TRY_all, iNat_TRY_fuzzy_merge_2]\n", "\n", "iNat_TRY_final = pd.concat(frames)" ] }, { "cell_type": "markdown", "id": "dcb49444", "metadata": {}, "source": [ "Compare shape to number of unique gbif ID's, check that they are the same. We want each observation represented only once:" ] }, { "cell_type": "code", "execution_count": 31, "id": "082acd2f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(11895453, 24)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_final.shape" ] }, { "cell_type": "code", "execution_count": 32, "id": "0decb304", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "11895453" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_final['gbifID'].nunique()" ] }, { "cell_type": "code", "execution_count": 33, "id": "f05024bd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gbifIDscientificNamedecimalLatitudedecimalLongitudeeventDatedateIdentifiedDispersal unit lengthLeaf AreaSLALeaf C...Leaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
01229615436Commelina communis35.987483-79.0575462013-07-07T00:00:002013-07-07T20:33:11NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
13384000233Commelina communis42.093762-75.9236602021-08-23T13:06:062021-09-17T21:15:37NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
21807276585Commelina communis40.787636-73.9337282017-09-04T12:47:582017-09-04T21:58:57NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
33355124418Commelina communis39.643158-76.7642452020-08-26T10:19:562020-08-27T13:21:22NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
41802638502Commelina communis43.1095051.6225432017-10-21T10:01:002017-10-21T09:02:42NaNNaNNaNNaN...NaN12.6315791.71NaN8.48NaNNaNNaNNaNNaN
\n", "

5 rows × 24 columns

\n", "
" ], "text/plain": [ " gbifID scientificName decimalLatitude decimalLongitude \\\n", "0 1229615436 Commelina communis 35.987483 -79.057546 \n", "1 3384000233 Commelina communis 42.093762 -75.923660 \n", "2 1807276585 Commelina communis 40.787636 -73.933728 \n", "3 3355124418 Commelina communis 39.643158 -76.764245 \n", "4 1802638502 Commelina communis 43.109505 1.622543 \n", "\n", " eventDate dateIdentified Dispersal unit length Leaf Area \\\n", "0 2013-07-07T00:00:00 2013-07-07T20:33:11 NaN NaN \n", "1 2021-08-23T13:06:06 2021-09-17T21:15:37 NaN NaN \n", "2 2017-09-04T12:47:58 2017-09-04T21:58:57 NaN NaN \n", "3 2020-08-26T10:19:56 2020-08-27T13:21:22 NaN NaN \n", "4 2017-10-21T10:01:00 2017-10-21T09:02:42 NaN NaN \n", "\n", " SLA Leaf C ... Leaf delta15N Leaf N P ratio Leaf P Plant Height \\\n", "0 NaN NaN ... NaN 12.631579 1.71 NaN \n", "1 NaN NaN ... NaN 12.631579 1.71 NaN \n", "2 NaN NaN ... NaN 12.631579 1.71 NaN \n", "3 NaN NaN ... NaN 12.631579 1.71 NaN \n", "4 NaN NaN ... NaN 12.631579 1.71 NaN \n", "\n", " Seed mass Seed length Seeds per rep. unit Stem conduit density SSD \\\n", "0 8.48 NaN NaN NaN NaN \n", "1 8.48 NaN NaN NaN NaN \n", "2 8.48 NaN NaN NaN NaN \n", "3 8.48 NaN NaN NaN NaN \n", "4 8.48 NaN NaN NaN NaN \n", "\n", " Conduit element length \n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", "\n", "[5 rows x 24 columns]" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_final.head()" ] }, { "cell_type": "markdown", "id": "27a2451a", "metadata": {}, "source": [ "After matching with alternate name and a conservative fuzzy match, we were able to match about 85% of the iNaturalist observations with trait information. Many rare species seem to be absent in either one of the two databases.\n" ] }, { "cell_type": "code", "execution_count": 34, "id": "b136932f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percentage of iNat observations linked with at least one TRY trait:\n", "0.8484991338790769\n", "percentage of species in iNaturalist matched with TRY:\n", "0.3161528297731777\n", "percentage of species in TRY matched with iNaturalist:\n", "0.5531517299838176\n" ] } ], "source": [ "print('percentage of iNat observations linked with at least one TRY trait:')\n", "print(len(iNat_TRY_final)/len(iNat))\n", "\n", "print('percentage of species in iNaturalist matched with TRY:')\n", "print(iNat_TRY_final[\"scientificName\"].nunique()/iNat[\"scientificName\"].nunique())\n", "\n", "print('percentage of species in TRY matched with iNaturalist:')\n", "print(iNat_TRY_final[\"scientificName\"].nunique()/TRY[\"fuzzyName\"].nunique())" ] }, { "cell_type": "code", "execution_count": 35, "id": "0502bf4b", "metadata": {}, "outputs": [], "source": [ "iNat_TRY_final.to_csv(\"Data/iNat_TRY.csv\", index=False)" ] }, { "cell_type": "markdown", "id": "1bd68b38", "metadata": {}, "source": [ "## Log trait values" ] }, { "cell_type": "markdown", "id": "30e8d999", "metadata": {}, "source": [ "The cwm in sPlot were caluclated after being log e transformed, so we must log e transform iNat data also:" ] }, { "cell_type": "code", "execution_count": 36, "id": "624a3225", "metadata": {}, "outputs": [], "source": [ "trait = iNat_TRY_final.columns[6:24]\n", "iNat_TRY_final.loc[:, trait] = np.log(iNat_TRY_final[trait])" ] }, { "cell_type": "code", "execution_count": 37, "id": "56a1b56b", "metadata": {}, "outputs": [], "source": [ "iNat_TRY_final = iNat_TRY_final.replace(-np.inf, np.nan)\n", "iNat_TRY_final = iNat_TRY_final.replace(np.inf, np.nan)" ] }, { "cell_type": "code", "execution_count": 38, "id": "17303325", "metadata": {}, "outputs": [], "source": [ "iNat_TRY_final.to_csv(\"Data/iNat_TRY_log.csv\", index=False)" ] }, { "cell_type": "markdown", "id": "9b7d6011", "metadata": {}, "source": [ "## Number of observations per trait" ] }, { "cell_type": "code", "execution_count": 39, "id": "d978a349", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gbifIDscientificNamedecimalLatitudedecimalLongitudeeventDatedateIdentifiedDispersal unit lengthLeaf AreaSLALeaf C...Leaf delta15NLeaf N P ratioLeaf PPlant HeightSeed massSeed lengthSeeds per rep. unitStem conduit densitySSDConduit element length
01229615436Commelina communis35.987483-79.0575462013-07-07T00:00:002013-07-07T20:33:11NaNNaNNaNNaN...NaN2.53620.536493NaN2.13771NaNNaNNaNNaNNaN
13384000233Commelina communis42.093762-75.9236602021-08-23T13:06:062021-09-17T21:15:37NaNNaNNaNNaN...NaN2.53620.536493NaN2.13771NaNNaNNaNNaNNaN
21807276585Commelina communis40.787636-73.9337282017-09-04T12:47:582017-09-04T21:58:57NaNNaNNaNNaN...NaN2.53620.536493NaN2.13771NaNNaNNaNNaNNaN
33355124418Commelina communis39.643158-76.7642452020-08-26T10:19:562020-08-27T13:21:22NaNNaNNaNNaN...NaN2.53620.536493NaN2.13771NaNNaNNaNNaNNaN
41802638502Commelina communis43.1095051.6225432017-10-21T10:01:002017-10-21T09:02:42NaNNaNNaNNaN...NaN2.53620.536493NaN2.13771NaNNaNNaNNaNNaN
\n", "

5 rows × 24 columns

\n", "
" ], "text/plain": [ " gbifID scientificName decimalLatitude decimalLongitude \\\n", "0 1229615436 Commelina communis 35.987483 -79.057546 \n", "1 3384000233 Commelina communis 42.093762 -75.923660 \n", "2 1807276585 Commelina communis 40.787636 -73.933728 \n", "3 3355124418 Commelina communis 39.643158 -76.764245 \n", "4 1802638502 Commelina communis 43.109505 1.622543 \n", "\n", " eventDate dateIdentified Dispersal unit length Leaf Area \\\n", "0 2013-07-07T00:00:00 2013-07-07T20:33:11 NaN NaN \n", "1 2021-08-23T13:06:06 2021-09-17T21:15:37 NaN NaN \n", "2 2017-09-04T12:47:58 2017-09-04T21:58:57 NaN NaN \n", "3 2020-08-26T10:19:56 2020-08-27T13:21:22 NaN NaN \n", "4 2017-10-21T10:01:00 2017-10-21T09:02:42 NaN NaN \n", "\n", " SLA Leaf C ... Leaf delta15N Leaf N P ratio Leaf P Plant Height \\\n", "0 NaN NaN ... NaN 2.5362 0.536493 NaN \n", "1 NaN NaN ... NaN 2.5362 0.536493 NaN \n", "2 NaN NaN ... NaN 2.5362 0.536493 NaN \n", "3 NaN NaN ... NaN 2.5362 0.536493 NaN \n", "4 NaN NaN ... NaN 2.5362 0.536493 NaN \n", "\n", " Seed mass Seed length Seeds per rep. unit Stem conduit density SSD \\\n", "0 2.13771 NaN NaN NaN NaN \n", "1 2.13771 NaN NaN NaN NaN \n", "2 2.13771 NaN NaN NaN NaN \n", "3 2.13771 NaN NaN NaN NaN \n", "4 2.13771 NaN NaN NaN NaN \n", "\n", " Conduit element length \n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", "\n", "[5 rows x 24 columns]" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY_final.head()" ] }, { "cell_type": "code", "execution_count": 40, "id": "0aed0657", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "gbifID 11500000\n", "scientificName 11500000\n", "decimalLatitude 11500000\n", "decimalLongitude 11500000\n", "eventDate 11500000\n", "dateIdentified 11400000\n", "AccSpeciesName 11500000\n", "Dispersal unit length 4700000\n", "Leaf Area 4800000\n", "SLA 7600000\n", "Leaf C 5000000\n", "LDMC 6700000\n", "Leaf fresh mass 2700000\n", "Leaf N per area 5700000\n", "Leaf N per mass 7000000\n", "Leaf delta15N 2400000\n", "Leaf N P ratio 3800000\n", "Leaf P 5100000\n", "Plant Height 9500000\n", "Seed mass 10200000\n", "Seed length 3500000\n", "Seeds per rep. unit 4000000\n", "Stem conduit density 1200000\n", "SSD 3400000\n", "Conduit element length 300000\n", "dtype: int64" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iNat_TRY.count().round(decimals=-5)" ] }, { "cell_type": "markdown", "id": "8192ca52", "metadata": {}, "source": [ "## Density of observations after linking" ] }, { "cell_type": "code", "execution_count": 41, "id": "a7615ee9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq0AAAE5CAYAAAC6QxljAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXxV5R/H3+fGuuMuGYOxMbq7U5QUAUVUTFBUbP3ZimJ3g4kKIiDdSHd31xjr7rpxfn+cnd1nvcGQuu/Xa69z7onnPPfuxOd8n29Isixjw4YNGzZs2LBhw8a1jOZqd8CGDRs2bNiwYcOGjeqwiVYbNmzYsGHDhg0b1zw20WrDhg0bNmzYsGHjmscmWm3YsGHDhg0bNmxc89hEqw0bNmzYsGHDho1rHptotWHDhg0bNmzYsHHNYxOtNmzYsGHDhg0bNq55dFe7AzZs2CiPJEk+Wq22f0BAwJ1ms7nZ1e6PDRs2bNQVkiSZZVneEh8fPxfYLMty/tXuk43rA6kmxQUkSTIAzrIsny/+LAGPAE2BtbIsL7mivbRh4wan+JpqazAY7tFoNMN8fHxcR4wY4Tx48GCnFi1aoNHYBkWuBE5lPuddlV7YuNrYzoP/lsLCQrZv387ixYszV69eXVRQUBCXm5v7V2Zm5hxVZ9iwURE1Fa3LgTOyLE8u/jwFeAU4AzQCHpZl+bcr2E8bNm44JEnSAz0DAwMfsFgs/Tp27Ki79957fQYOHIibm9vV7p4NGzZs/CfExsayZMkS04wZM9KjoqJyzGbz/OTk5JnAAdlWttOGQE1FawLwqCzLCyVJ0gCJwMeyLH8kSdLbwHBZlltf2a7asHH9I0mSFugeGBg4SZbl3oMGDbIbN26cR8+ePdHr9Ve7ezZs2LBxVcnKymLFihXyjBkzUvfv319gsVjmJiUl/STL8rGr3TcbV5+aitZ8YKAsy5slSeoA7ABCZFmOlSSpF7BMlmWXK9xXGzauS4qH/tv7+/s/BtzWt29f/cMPP+zVs2dPtFrt1e6ejauBLENBIpjzwVwAlkJAAxodSDrQ6EtPdc6gc7zavbZh4z8lNzeXpUuXytOnT085duxYrtFo/DM1NfVnWZajrnbfbFwdaipaTwOfyLI8TZKkt4DRsiw3K143DPhFlmWfK9pTGzauMyRJCvLy8nrEzs7ugXbt2jlPmjTJu3///tjZ2V29PpX5fN2Pu8ky5MeDbATHIEjdDak7IC8WitLBmAWyCSwmRfRJOjBmKss1etA4KMvFqd4V7LzAuT5NHboQ61gPgMzaeGxYjJCyEzIPQ8YRyDoBshkkrfKXeUTpd21wDAK3CHANB5dGoHeBBvfbxKyNm4LMzEwWLFhg/vbbb9Pi4uIS0tPTv8zPz/9bluWcq903G/8dNRWtLwP/A1YDg4GXZVn+snjde0APWZZ7XMmO2rBxPSBJkoO9vf1Ib2/vZ729vUOeeOIJzzvvvFPn7u5+dftV5vN1J1YLkiB6HuRdBFMuFKUplsqMI1CQoGyjcwFTDjjXB6d6YO8NOtdia6VWEatIYOehLJfNVktnXowiLPNjyx36vYi3eEWbowhdYzbIFkAGjT34dFL2S9urCGWPluDRDI59aG3Ary+4NQGtvSKeZTO4NACfropA1tgr65AhZgnsfbLmv0uH7yFkjPJbFCRAYZrSpr238hs4GC7jR7dh49okOjqaX375Jf+3337LMZlMu+Lj4z+1WCwbZVm2XO2+2biy1Ei0AkiSdB/QATiAYlmVi5f/AGyXZXnGleqkDRvXOpIkNfP3939eq9XedvfddztNmDDBpVGjRle7W9cfsgw5Z+Hsz2AuBEsRGHrA1ruU9d4dFcFp7wX2vuAWCV7tQesAyVvA0As8W9bwWBbIvQCLG5ZernVQhCwow/LODRShq3dTji1pQZKgIBnSdoNHC6UPjkGQcRDS90PGYWt7Y80g1TD7Q+wy2DikZtuCIsgtRmGBRKlXkn7rwa93zdurY1odss4frOG/5ZKwGJVzRzYr/1OXUPxSHQBIKtbtwTHK1DnXutuJxlewT9VhyoekDcrogLlAObd9OoOj/1Xs1PWFLMts376db7/9Nn3t2rV5JpPpp9TU1O9lWU682n2zcWWoqaU1BIiXZdlYwTo9ECDLcvQV6J8NG9cskiQ5OTs7j3Vzc3suPDzc94UXXvAZNGgQOp0t/XGtKUqHU99C1CzIOm5d7tMFUneCQ4BiBRUFpUjwcOi5sPrjmHLh4nw4/zskb1UsrSJ2noq11MEPIp9VLKmXSl4cFCaBZ+tLb0NFlsGYAXErYdvd4N0J3Bor1medoyKaC9Mg8yiYixM22XlBr6Xg2+Xyj18Z5iJFkGt0yvGzT8OxjxQxXZjC3uwiLthH0Cx/N42dHRTrr0tD8GwLfr3AMeDyjj/PW7G6V0TrD/DzeQm4BoVrzCLYNEKZV63wGYcV0e0WCUHDIGiocv5rbH7vNSE7O5tZs2aZvvjii4ysrKyjCQkJ71ksln9t1tcbi5qKVjPQRZblXRWsawfskmXZdmXZuCmQJCnc39//Za1WO+SBBx5wnjhxolNwcPDV7ta1iSlPGbp2DFAEZzGiu4IMsPsJOP0tSfa+fNV4MjszJpOnceNMmMyg5MW0zdrJU1HvV34cQy/ov0GZz41myt5lpOj8yfEsoFn2YSJyTjDUlKAIA4sR6t0OsUsUEQvg1w86/6KIKqmsM8U1yoq2ilVXpf5dEHibImBdI66c2DFmw9axpMUexI0EUvV+pOt8iCw4WOkumRovcjXuBJqEFJz+A6Hvqsvry8HX4OjU8svdm0H3ueDe5PLav1IcfhsOv6XMuzRUXpB8u0FRJiSshpjFit+zvQ9v+E1lmddY7H0Pk+jgx3mXBlhqarm/Sdm/fz9ffvllxsqVK/NMJtO01NTUb2VZTr3a/bJx+dRUtFqAzpWI1m7AGlmWy+ZntmHjhkGSJI1Op7vN19f3zeDg4NBXXnnFe+jQodJNHf1vzIGYhZC0EYoyoNn/wKuddX3sUtg4tPiDpAgJ3+54tn6PYTGL6Zu4jvGu4YpPZvbpUsPi3epbOBMu4V8Qy32xP/Bc0kzIFQTPqAzFd9OUq0xFZllFZ57kQIJjIAn2gXTVWhRLlsUEuecU665K75UQeEtd/TL/DYfegiNvQ+g4aP+N4sLwX2DMgbnKb/6P8T2yAtLxNcZzMXYMaZZQDF4b6WP+jUby3pJdcnFBiwkHh2IXC7dIaPl26fPlcrCYlHPIKUhx47heyI2G45/CuV8Uf2y9hxJo51xP+U5Jm8CYwXn7cBoUngYgS+fKPq+29PbuAA0fAPemV/c7XMNkZ2czY8YM4+eff55ZUFCwJS4uboosy/ur39PGtUqlolWSpJZA6+KPvwFTgHNlNnMAxgA+tjytNm5EJEny8PLymqTX6ycNHjzY5fnnn3dv0uQatd5cSWTZaoHMPqMI0lNfQ45wS/DuCLfsVObz4mBhkHWdpFOi+IEXWn/IxwdeEtbpsRudxallkYTmXiBW14A0B3fcTemEFFwo2eycYzhbPPtwX+snFD9SkdTdEL8K0vZBzAIAnmv2DZ8efUJZr3NWIu5d1b9w65+D//VjXVUpSod5XopYjXj8vz9+1kkuLB5LPekgKzzGstbtdjRH+pEve5DgD+3MS3nFOLTULiZ06MLGg6EPNBj33/f5WsZiUlw7UncrL2e5F5WgQ0uh4rtdmEZS5lmOObWld+Yy635aRxiTU3Of6ZsUWZbZsGEDU6dOTT127FhSRkbG1Pz8/DkVuTzauLapSrS+CbxZ/FGmfACyynlgoizL/9Z992zYuDpIklTf39//DTs7u6HPPPOM+4MPPmh3w1epkmVFkCath4R1yvCkbLH6mA49owyf/21fft8O06DRw9aHp2yBqL+K84/Kig9f1gnFyhb5Aux8ACyCb2qTFyHiCYhfxfQLZ/A2JtI+dzP1Cs+hUQOLwh6BTtNpc0D5GFp4ggVFrynWqMJkZUjcq63iKhB8O1z4C/Y9U+FXvb3Fdha06FwnP9tVIXEjrO0N3WZD/TtrvFs5t4zLQbZAzEJitr9IsOksFiT6BxUS7LOC3w8OZ7PzEKYafmLl+fKBRdLd1qPXpB/1YqzzF/9jTxz3LGWqtxSR4q6/Oi84F+fDvmcVX2vHALCYlesz9wIlv2Dkc9D4SXAKuf5ewv5DoqOj+fzzz3Nmz56dXVRU9G1aWtrXsixnXe1+2agZVYlWPWCHcp/LAvoCu8tsVmR7U7FxIyFJUtvAwMD3PD0927311ltet99+u+aGdgGwmCB5M1xcCLGLih+CFeDfH3otB61eEUyH3lACo0w50O0v8OtTevusU0qKqMyjkLpL2S7nvJJXdNdDpbd18FMi8htP5pf4ZB5M/LRk1auh05laz1d5aDsFcm/e7UTZN8bPGMO8c4K1tcmL0ObD0u1azDC74qC421vsYEGLywiyulqc/wO231d6WS2yE9SpaC1m8JYE5l8MxV4uJFPjhVkLx1xa8YL3asySjmCnLTTJPYShKJ4T+o7sdu3J3qbWFHDXlGi1mBULZ2GK8pdzli3n5tA8+xAexgzOOIfTqMsvYOh+BTtRBVmnlMDE7fcpIwTtv4Hjnyi5iVU8WoC9j/JSIWlA0isuBF7twbuDMrpgE7VkZ2fz448/Fn7++efZRqPxn8TExHdlWY6pfk8bV5Map7yyYeNGRZIkSa/X9/fx8fkoMjKy3pQpU7y7deuGdDPc2P/xVR7OZdE6FUfWy6CxU1JP6T2g6x9KTtO9Tyk+lAVJyvZhD0PH6cr8nsfh9PfKvM4ZvDooqX0AOs+AHeOtx3EMhEaPwuE3ANjq2p9u2RUM2kgaRdiK6Z0kHTgFQ72R0PpDJYK9DM9sXsR7MWMpkhzI1HvgaMnD3pKPG0alLUlS8rs6+CnthN5z7QbvAJz6Tvl9ATpOg4BB4BxS492vhGjtUqyXAvNj6Z6/iAzffNZ7D6IgtRkA8UKCADVq/6QQsX/VRau5UHEtiVmkBOcVJle9faup0OyVOu5EMUUZiotAURocfFUZqbCYlPPUpZGS1k3nrLwEii9q5sJikX0Ojn+sBD061VOEqzlfCUBM36/MO4VA6N3Q4q3i/MBXgLwY+LcPmLKUERyNXvE1Ft1yXCOsAhuumpA2mUzMnTvX8vbbb6dlZWXtiI+Pf0GW5RNXpTM2qqVWolWSpAggGMWXtRSyLC+vw37ZsHHFKRarA7y9vT/v1q1bwNSpUz0bN76aiRuvAqe+U6x3nq0U8XbCauXErTE4N7SmUTL0gov/lKx+InQx30QNUz64NIJhp5Uk+yvbW9votVTJuRqzgARdIL6meLTIzPF+iDGpP7PE7X7u6fELz579gNdOvIaW0tlpLECWzo0C2RUNFgzmeLb6dOGRTj9xwi2yZlHUhWmKq4DFBDon5YEu6ZUHKbISzJV9WikIIJsY2HE3B92s3yHxWsrPby5k9rrJ3JU8nYnhi5jWYViVm6syoC4E6pUQvFcVUy7sfVqx4hsz2ODbg4XBI8jSu/HL2Z8g45Cyjb23kmLMu5OSgsq/X936kFpMcPIryI2C8zOKq7XZKz7gwcOVLAuWQkg/CMHDeXLhUEDi92KDe6vipA2BcdYmd5YZRIgKBa3FRM/zRxgT/zuPRn/OL8GTeLDnt3X3PUTyYmFh8duFVwfw7Q4OPpB5XEk1JwZV+t8CCcVZJDR24D8AnEMV3/Pwx66csC6DLMusX7+eF154ITU+Pn5PfHz8M7IsH69+Txv/JTXNHtAU+BtoSsW+rbIt5ZWN64VisTrQy8vr8x49evi/9957nuHh4Ve7W1eWlB2Kv6oxS6kMpdGDY7BSmUlrr1hRAZZGFvuh1hDHIMUXtfGTigVIlhURsGWUdRu3ppB1rNRua5xHMSB3Hhcd6rHbswsXnJQ0Pj6FyXgXJVM/7zw5dk6k2ntTlK/4RPprj9E1ZTu/h97L+K6/17lwuu30Dpbv7sJhl9b077SvxPJzzYhWcxEkroUNtwHQvXUMW5oGVbmLTbRWQcoOWN1FsdYP2ou/bOGT/c9zT9RMNhp60qv+3WDoqWQ6uJJWwIsLYPNIxeoYei80mgB2VVfQe/IbZfq74ClSVryWFa6x9Yr4ZeeDjL4wFw0WJjafzTK/O4ArdI5nHFbciBI3KDmGnYIVS7KpTNVV92bKi3FFDL9Qq5GEumLDhg0899xzqXFxcfsSEhKekWW5kg7a+K+pqWjdDBiAF4FjQFHZbWRZrsQZzoaNawedTtfTx8fnh5tBrKrDtu7mFJZe8KdIciBb44mfixvx2fl4W2KxEy/lxs9Au8+U+QtzYKsS4LPKfyB7vdpx2KMFZ1zC2J0fq0Svu4QpCeJBEatpeyF6riKIHQIUa4qhlzIkefwTitIPYFfGBf4v70cJLLpA/cKzOJuzcDNnkKQLIkvjRTMXOJpvIlfjTGBeEjmSFyedm7LN+VY2uIxEljTs6lDHP1rydljTFYacArerd24MW6JMnYrrBMQHwJCcH3khY4KyQOcCQ06CU2CV7dSlaL1SXBUxXJgG/3gr8/034Sd3Z+7+AdTLj6JBxy8gcPBlCdVKv1NhKpz7tXj0okCxLCZugLzi2jyD9oFXm2rbV88PgMVD4X+CO/f5Bso07Kwy/bnYhfzhbWuZmtcfgCRNPU5qO+Elx9Os2RBFGKqZQPQeTCrwIF3vzVbPPhRqHXDKAxdTFk/EvMuBoAbEOAYTdNYVCZnzdk1J0/lVfi1azIprQtKG4uIdrVCDM/ec3EOSNoR9+oEc0XXHiWx+aXlcub84BStW7avIxo0bVfG6Nz4+fpIsy2evaods1Fi05gB3ybK89Mp3yYaNukeSpCb+/v7TW7Ro0eybb77xjIiIuNpduqJ02QH+xijGZX7Cbdm/UaBx5t6ggyzr7s+gVaCRzTQzbuLWwh/pq1mnFAAA8Git+Oy5NATXcHqkbOOsSxh9E9cxOnouw3POlraKDNyh+KQd+B9cnKcEfBRlQH6xuccpBPJjWeg1liiHCLT2GdwX/RPuJiVYN8quEaFFZyr8DmY0FGocyJF9McgXKJLssJMVkR2lb0zosK3K0G1dYjHDAj9o/qZiPb5KlIjWXJn3LW1pwAFyJDdc5CwIHAK9FtdIVNlEayVkHIblLZXqZ7cd5P4jC/jt0MgS15AaWx5lGeJWQPYpRfg51wfXcCS9G/Vyo8nXOpLi4Gv9XudmwI77levEo5XiKy6bFHcVS5HiF+7oV6ND11q4yjJjdhwmwHKGII4Taj6MCT39iv5UNnJvqviJF2UollFjFmedwtngdQu5OhcCchMYnfxbhX05ZdeKHc63cF/Px2tmGbUYYbZducWfOv/KGof7WXmNpUxet24djz/+eGp6evrixMTEF2yFCq4eNRWtB4F3ZFmed+W7ZMNG3SFJkr+/v//nvr6+A77//nvvbt26Xe0uXXGGb7nI+PT3GJr9M3H6Bsx2f5YVLveyobM9ry5bw8j8z2hh2mi1smody5cz1ToRZ+dOYH68dVnw7UqQSH6M4hYQ+TSc+AryLyrrG02Ejj8oPmtriqOrJTs+Cn6Hnhkr6Jy9ATMa9nh0wr0gl7CCo8z3nMhS9/sIzr/I+4mjlX1afwj+A2iZ2ISXYp5nXHIlfndXwhoqy7DAH3RuMPTUVQsOGbYEmpk28X5+r5Jl6xzHsMDlcb7u16XYH7d6bKK1EuYUBwX1XaN8XtaE37xH8lITJYCwxqI1/RCsaKUEGZlyleIVenfovUKx2AP3dvmdP4KGQcIaxTVn58PKvj3+UYL/LoNLsbh2LC4RZCqOW/S0xONrieHLIWVMpfnxzNj1Ng3yz+BkzsXJnEvTnMMAjGixk3WRkUiyzD3b99A5bxW9c+ZjMMVg3+J1aP5q9Z1P2qT4FAtV3fJxIl0TQIbGQFM/X3DwBXtD8dQXHAyKb3E17hNXAovFwsyZM82vvPJKWkFBwXcpKSkfyLJcQU1pG1eSmorW/sBHwChZlssWGLBh45pDkiR7X1/f1+0d3Z7sNOJDN5/Ikfzw2OUJEL+k0p8HCzm+f31AmTYqNho6FN/KXLPLt7OtjkvBR560zj+x/w+esNyHGQ1v+81gtetYLJKWXb6zYf9zJRbQJCmElXYTuO+WexTLSH6cUsferw+4NOD9fV8hI/FE1Ee4mTM56NKB21vs4FzcOCWB/6ADSpnQdf2UiObAIdBjrhKAcXG+YnnVOZaUSd3gNojeHf4Hnm1gTRdlWLTzDPBsqXTcmMNzZ6bxe4P7SHHwJTQK3EzpHNzlBUC2xo39Tt1Z7zOQTlkbGJi2kENOnZlS7weczVn80aHb5QfHmAtgbT9I2QbBt+Peen6p1ZlXME3vrSut8yYd6OVCxuW+y7i8d0uWv+q6gqlDB11S+82KXYqPXsXiSeLV1/KQMu2yXZnmFddTLBRibqIFg932alLq1kr4Rv+j+FwH3Ap9lkPWKYxLm/Fp8If85vcsJ2oYizlsCYSZ9/J5XnuedNlPlLYF7c/GcZ/bXRgLvbHTZhHqtLFk+yJJT47WDQ1mPEwZ1obuMlaY+QKg73rr/LoyWeXKfuc7ik/XRsLAhVeaMs0s1nipxQMT6Z7WbUKirfOfPFfp162WwStM3JP/FmMLprJY9ywrtJNI1IQxv91cSPhXcRXy6QKZx5mUkchJlyZ8ePQp2mcUq+jI5xTLd2ESFCQrWRwKkkt/NuUoL9kho5VKcL7dFF/6/5BbFxSQt+Yry/FF36bnZaY+mZubO1u2pWH6z6ipaN0NhACeQBSQUXYbWZY71nHfbNi4JBwcHIZ4enr+dH8/D8PbA09IPxct4rGHq46yrgpVrEqyhQZ5ZwgsjKH3ziyaadZQz301bqYsjjh04g+/J8nXOHFW25ZCjeN/LlhbHYTG8hammHsox3IahFGyp5e8X/GZc/CzugGA8hDpv6Fcm+r3dcqDD848TP2CMzwZMZvdbscUkdp7BQQWiyfZAkffh0OvKf5qRemABrCwy6UH+Vpnumeu5onwf/i+wwg48bmSJB1g6GklQpjSD+DQKGWa5wTNs/ZDpj8pOn+y3K1bPRb1KS/GPW/dqeU7Sv123WVUk86JgsUNSj4u8b+dp1pMI9XeF/hvRevslAAs6HjeYwN98/9ifP7rvOy6hveH9r+k9q9F0domdwu3n9iASXZAssslgJOYtBoOSQM5KN3C4frWYfI6Fa25F2BRqDLvEgaNHuHbxDwej5/CQaeOtGr9FNQbBdryw9ciYxen83luOzI1vrzosgmTZE/EKZjgPogm9ko0fCyRBKFkTzrv0IieHZVSrKH5Z9ic8D/Fj3TgNiWjRQWIohVKC9eyr+AVCVdVtMJ/I1xvW2FhRMEXDCv4Bn/5PIc0fXGUswmXxRTvxWnmTBXcIO+u5r9nzFJeOs7+CCnbFXcG7w7Kvcy3hyL+i9KVlGFF6aBxAEd/ZWTIp3OdZSIYsgyKMlPQ/nGb5dCRuFNxMbF3yLJ8rPo9bVwuNRWtv1a3jSzLD9RJj2zYuEQkSWrg7x/4R+twj07fjz6jc/UMwNvXH7rPVWp515a8WJ4/sYxGeSeIzDlC66zdJRYSs6xlm6ELa/wHcPu5FbTJ3VFq1/VOI5HRsNexL6ftWjG9rZfi7yaboSj10qvWFKZCfgK4RfDhlq/wMibxTeBbRB52xFVO5nADb+zlfDaddSFD441HyK2KddO3K4fWvkxL84bybeqcYcA28GxZSrCKnA8FzvwIuyYoQ5ot37XmMzXlK3kuc87DmR8Ui2fXPwlPU+rKLz/cjPCIe6DZy7Cmh2KZBeg+R0lvY+dR8gBWBStAvqMFv8J4yFAi5LME0eidnUv73I0k6Oux0H4RHHpdGTL36ar4Bbpdgs+yLMP2eyFqZqnFTftFc8zvEs6fWqCKVkm28Hj+owwu+LFkXa7khrOcxXdOXzFpxKX52V4LotW9KJOuKdvQyBb6njzOUwn/I9XSEIBCyYEEGqPT5NFMXo89irvK835L2Oo8pG5FK0BBCqTtUVxZjr2nvHyJNHwAOv9SdRuZJ2BZE1boJ/KN0/cl13OnM1EMcXmZtg6zSzY9SVfmNhjBtHovlCyrab7Z60243rpSOY+75K6mm/lvmlo24S+fgw7fgWc7cA0DOy/Ij2dowgkOubWhUGuPRrYQ5+VS8wMVJCuFURI3QNJGJUUZKC8Adp7Kn7kQ8uOVlH16N6h3h+J+5OBb8+OY8hWxW8FIzpY5o9GcXMRDfwUVpWcY/0yMj33GVl3rymIrLmDjukeSJDuDwfC2m5vbwz/99JNPry4tlTd5jb7i/GxVNSbLELuEnYc/oFP6djL0Hhx1bcEZ58ac1HbikEtHNkfWxyxpydUrN1jZlMvklcdJ1ITybMLzOEoZpDm5Yi/n09yyDlfSAUXoaiUzABdpxkEGkZzViXOmbizvao0Cz3cponnuHgbsiSfb4kew9gARurW0dttmTeYP5GkdcTLnM6PBfYw//zsA2+yGk+ssk6b3Zab3ZE45KcPvkmzh+L7Ks9JNbP4X65zuAqBAMPrcVfzcPd4EHOQchhR+w/2FLysLeyxU/NFOf6MEVvj2hLil0G8DflIvfAsT2Ly9KZ6mdH7yfpXvfd+lQeEx5uVMUKya+bEA5Godyda5kWPx5aR9W/I1rniYk+mvPaSUfq1/F0RMBt8qzNQFSYqP3PFPlM+37Kh828pIWAfr+vGh/VyKCvy4k5eIkLYzoeFKtrrdctmCr6ywqkhoNc08xrFlzcrvbO8LQ47XfeBZHTKk2F0mSPm30mOzMq3nN5+GkZ8R5LgDTfH5b0bLTM2HLNU8S/gZ5ZeQi38QjaaAd+s5ApBsakSCqQXbTOM5YhyCU671HP7wxZr3TX0ZKyhj0Mx0g8l/n8VHjsaBbF7slM3np5JZ73IHSbp65DpDeP5h7ix8l3jHAKKcQ/nCORQ8WtDmTEMGZc3m7bjx/BLwDC+1+aBEuGa5yvy46xFGRS3Aw5zGhPAlrPccAsBpZXChyqF/lTenKFPRbcKnuBZImuI5w+4yrqhrKjDGVyRu64rKXr1LHaMgRTl3hRd19zLS7rJHMow5SgESnWP5dfmJPH1mIU+e/QSPvHwWSK9zhk64kMZrHc4o6eR0jkpBBqdgRewaMxRL/KL6AKRJ/qRogojwC1AsuqY8xc3JKRCLcwQ/r0k3vvnRz2k5ObnPZmdn/2VzGbgy2ESrjesanU7X1cfH58/Jkyf7v/DCC456vTVApVrBajFD+j7F79KYqbyxx6/AknWKeYFjmVXvfjZ798ak0WMofuidaVS+PdVKFnFKmV4UjHKSbMGFNPxzUgmWDpOPOzk6ZzrJ/9DMuIVg3X6QZKb5vEWcvgG98+fQI3MVDnJBicjNsXjjEtpPyRnp3pSZZ37imHtT/mxwDx8c+B9jL85XIo+BHI0L/3oNp0HeaZrn7eGwc0e2u/bjsYjOSgorcx6nnJrwbsNP2OHei0I7DQVaR9wyZTxNqTQ0HaR5zj4a5R0nMiqXJGNTNgZ0J07TiJfy7iLSXCwGPVooEdig1EL3aA3xK8AtkjX6htzTZhntMpW8pyobXYbyRsDvbOzgodzwV3UiypRNkr2BellJeJviMUl6Tti3I1kXzC0h9QANnPhMGfa/Pb7y4T3Zolhajn+i+OaOyVV8bmvBN/N+4omiR8iVPXCWMkqW39rkNNH2jf4T0Vo/9wL3nP+TCSd/oX7hOeLsgglsNA6av/6f++7VlrKitf/OJDo2fYL6AXM5lHEfJ7NGstO1D0U4keJrxiQp/8twZcS8RLRaNOCjO8kwzyfx0x8lztiKxvaryJYNpBojyDDVI9McTJ/hfcGvb6X+oCJVidY754CDnI0n8STSkPOh1va09um8Gvc4t2X8BUCMYxABBfFoZQsJumC2uNxG86LtROYdJl3vyZuRH/JnvQdI99DhXZDChYUNcLbkcNC5A4u972G15+0k2NfjdKOqLagqqmgFq3AtK1rhOhGuFVDnwrUaglOzeP/Y09x+cQEuxV6OGfhhwg4fu1zFrUBE0iqjY8UUYc86+3vQYGZgiLNiwc08DlnHwZhJWg48tyis6N8DmQdi4lJGy7IcjY06pcaiVZKkUOAeIIKKK2KNqdOe2bBRBZIkufv7Gb5rGiTf8eNL7e0bjildkK3aG/TJr5UhZWOmdQ+vdnzkPYgFAWM45qbUtc90g/DiYbbaClYV0be1qNhNThXBO7sWclf61zyc+g72ch4b3W8jJnY0p029yJSDcJGS+eBR35KhqXLfy5TPsHVmgkynOR3qQLRDGBqjHcgyPbJW0jNzBfcWrYPMYyW/QoHGAQdLAXvdOuFuSserKA03Uzo6VCuYBi0W8i1upGt9CRRTE4ZPgrafKiUj/+2j+Adq9MrN2yGAVHMhx1xaM6rdWiUCe9ejcGYaAEb06CMnQ+PJsG0cZJ2k3qC9xDjXY+iWWJ5PmUS7/HWMCjnHim7Fw3diZR3fbtDi7YpzN266HWIWKkODjSZC289r7X4xYhG0Na3gmYJ7cJWUh9cb9X7kH28l2rtORaspHy9zPg1zzhGRfYpZWaeUwgHJW0hw8GOF553MNTzAcefWimvGdYBVtMq01/3NvZonMRrd2X74F3a79QSsJV2ThOj8ikSrihrh7ugYTSu7+fiZo3HXXsRLd45gu31KNHm90RA6VgnyUYdwk7fC+lsVK71na0ZZGrPNoxdmja5EuGotJtLy1rBl4x90lueiw8Q66SH6Ngvmr4tZuJtT6JM7D0fZmlmj7aC9HPZogTH9AF/uX0ef7IW0zC9t1T/v1JAWgw+Sq3dh8okv+XLf0yXr/jRM4u1QJRtGWeFanbUVai5cKxKtYBOuJceTZR5YfpYinEiXrKNcf43KU+45WnvQuyqGjOg5cMHq6jHUqwBj8QtXSWouWVbcEDKPQPIWNvy7jIe/TkpPz8r7OC0t7SNZFpSvjcuipj6t7YCNwEUU0XoIcAdCgRjgjCzLfa9cN23YsOLq6nqHk7vPj83HvuMxpe1CqZs8H27dr5QirQG9NptZHeOCvVzA25oNRNGG/c3tMWrsS8QnWEWqGMUMyk115AJl3k7Iza/WU/dUvAHIdrWuU9toY83uQmRxdWvlQSST62bEjDX4Y+bdFfe/ogdPiyPWz4ebK9Nu25SpIQmeLLyfvuYZABglLXu82tMFjRIMoXNRhvfT9zLH50H2u3YjRe/H2+cfw9OUggkd/3oP56xjYzyzzNjL+TQ1baVe0RmOO7ajZ7aQRiH4duj6pzUg6vQ0SFyniItT3ypJ25O3gEsodP0L3COV7RYEg9aRfh1/YF2xKJUTN8KW0SW14P/160f/xLX8r9EPzAycCAh+gSm74PAbEL+KWH19tgR04n+tPyDKpUHJb1QVt66EEPMx3sm+BbOkY7PDSHZIozmpU5wpl91WTQM1JXouHP1AsfCraB2VOuxe7RTxZehNi2OKWmsgVLtcPFSZqv9rN+Fhv7VrHfXvErjrb2UacQrsNZmMMowj3GkF64qeYnHhuxhxIlcwEscWF/HqtFOZagR3UlXMOhbrRNVqC9YXvTUDlGli5EUGZf7NbRl/0TR/H7F2Ifzh/jIL3CfQoOg4s6OLLwQ1ANExUAn+yz4F536HC7OwFCSxzq8vhdmhDM77WWlXH0CUQwQFGkd6Nb5DsbQdex+ChhPp+iUATYqLe3beAa76aCLd59HIey4h9oqAfbiokARf5VquZz7G8znjCWMPRZKe90M+40+/J2hWnO5Y/T8eFG5fov/2+dCKhZ2YzeSaqdpG6eDQ6jIxqL7WYM0goVLRy1qfDaU/r+9di47VoA8q3bdY52ODwF7Oo5lpM2e0bZk1tGb+sAUFBbz55ps5M2bMiE1NTR1jNBoPXX5vbdRUtK5DEawPAkagvSzL+yRJ6gr8BUyUZXllVW3YsHG5SJLk7V8v7B+vsLZdG973nd7ezYd5I2VYEg45Z6HXMsXB3iUM7L0qbKNH8c2oSUwS0y1+fKxZxG8tlcwCV0+wln5IQd0KVoBGER/z8QHFCfCiUzD1dK5KYIKjP8QsAuCEYwseaLyaFDt/tGZokrefJnn7cZQyGR//NZ5F6STqQsjWu2BBy8cBn/PT+T64WLIh7CEIHqGkEapoWF61hGrsIfIZaPGWYs2QLYpVbOMQXmr2Ch81fQkAvbmIor+trgDZOhda3nqQrat6sdZ7MK+E/6B8FyGYpdUhCC84RLfslQwsmEG6nSfjus4kxd6H3GqG1icuPcq0rObstevH614LyNe4lgpGu2zRai6APU/A2V+g4XgIGaMM9zs3AKegckEe6v/0ehKtkadMjAsYgq/+GD8UzuOCxZpQ5kqI1kMtresC5JOMSvmFB+I/Z57H43zu+zljMr7m+dTnoN1XsPsxZcPOM2DHeCWRfoP7CA4dR6xTML02QojxBL7mi2ys345MnXL/OC2OrsgykaeUK1AUrSoZHuChvUC6byGJRJAsaJt3Mm/DhB0ejqfJ1HoytumWGotWqFi4qmn1VGzC9dKpiXAVWTq45m0fOXKEO++8MzU5Ofmn5OTk12W5TFlAG7WipqI1DRgLrAbMQHdZlrcVr3sQmCzLcusr2E8bNzkehqC79fZO0xvf/aGzf8eRzLujeMXm0UolJhGnYBgeXXp42JTLpI0HiCzczaCMv7kotaCj/A//eg3jtZBfb2jBunBE+f1EJuxeylnHSKIdrE9orbl0H4NjrNuL/T3oPkcZkg+uJqVY8nY4+p5S7SfiCSXyN3E9XJgFuRf4168fI3ouLBXcxuquSoqbgEFMdovk9aPvUoQjE5rO55Bre6tgLUiCrFMMveBHtL1SbKCo/nH2rGyPsxo1fEdKlQn531s0h1dy7+RVr0Vsc1C+S52IVmO2Yl09+YUy7Nh1FgRWX+6nxWGZkKIztIs+T6Zk4Ly2tSJajdm0OeGACR3dk7fSIX8NhZIjj3Ubbs3m8B+jitanUp+mrdtP/BS7jSPuLUttUxeitbt+Gl2bPsp52nKUvmwI6cBhp47E6etT4CghyRY+OfkwA7NnM8XvV8ILD/JA5qcl/t5KEJukuLaMTAIH31LXVK+NpfsHZUQrpcVYWeGa4WFdl+CvTJN9Idh8nB9ymrKFu+nOLD4Jfo9pgUowY22srVBauJa1toJNuF4uZcVrXQlXk8nEe++9l/ftt9/GpqWljTYajQcvvZc3NzUVrakohQXWS5KUADwjy/JfxesGAAtlWb62owRsXJdIkuQdGeq5pHVwQadv3rhL4z2gdBqarYsG0S13FU+a47CgZaj0PoM0X3BLkzN0iTlCK+N6Who30MB0GI1UOq1NvuTEEo/xvF3/u5Jl3kJxvk09SgvFW5TUi6UEboviWKRdxUalqFDrusbFN20xjZPqg6ZWqxF9YHUmZWoS4krUtDWJxSkry/rVln2odt5pnd/RCbpvtX4OLK6sukrQTGKaG1X0qtQrFqoG4cGoCm5RtAP8er91Xrzxp/go08GJ8/jlxATF99VSqCx0aaQMh4eOA7dKnmqyrFQQOj9DsdA2fxP01rQ4fRPWsWr9LehlEwWSI/fU388Fu8bsbmuCw2/D0anQ+Glo91nF7aM8+P/cP5j6RadpO2gfuXqXkuT3AAdbVrprOe5Yk0QT406aGrdzt9cpiF+pWJPr3QGt3lXSnlXDO29YGOr/EK09fitZtj1vAlqKaOs4C6PFiVyzAR+7UyQam+KnP0auxZNX0tL4cnLN+1pXTP4autpPY4zzY0zLW8hh07CSc/i4oKPVlwD/BPDiIq2kZTQp2kmmJZj444+QUxTCiUjr9v4JynT1QGU6IPdPXku/t2S9SbZDJxWRJfuSaImgHkdw0GYWr9NTgCsuUhqFshMDWp5mcPpfFEiOvNm8WylXoopeBjsWpxVVix+AVUjHWV0gS1JIqdeuKGzyi4PYP1g5nVuDFXeWE9kjWJb4PTua+pdsJ1rMf37Q+hKgMvvO0p/LCtcrTYOo0p8vxcf6SvnSqu26VeA+ca0wZq51Pi/2CFE/3ZWWlJT0U3Jy8ms2q2vtqT7sUuEYEAasB7YDz0iStAcoAl4Ezlaxrw0bl4Snm+PQ8CCnv6aOSHce2QFI/hW25kOXP0Cjo/1+Ew85dSEkJ5Ypmna4kYRRo2eV2ygmnvuaEYVfcVLXkQuZg9honMLqsA7oKOLuvHc56RZBkcaB5d6jSo53vQnWsoiCtSzVCday1Ispv0wVrLXBuyiZT45P4LbkhdaF3eYqxQkE8QkoNc+PfaRYwmSz4m+bcQiyTirDug3vK9f+0ye/IN4xgMf8tjE1/i4+iBvFb14vw8oPIPuMIhSbvFRtPw+6tafLxY34FyRwVl/ND10WWYZTX8Pxj/knLwYzGs7pWoIUoQSEhYypVdnJRs4rSgRrqrERe7IeoYPHd+RavJmXNQ2Xwnzc9dHsSRtHorE5g3yeprP9z0To1wIVBKldYVroFzHGeRKL8z7ksKn6Ih5+nOZ1bRckLFzUdCLCbi2e7d9l+YkFnGBEpfutcb4H+x1D6eX7Bm09f+CTmChk3wv00X2DGT3xKYPo6f86MZZm/GCeTazcjHb567EjjyS7QH71U5KPvulZ6SGuCAfTHyEmrztu+mhOF/XFIvitX480iLo04SoiUTfCVc3CkeVWWri6Z107wnXOaKtwdQpqTuRrB7xGnXj3ie+//36YJEkjZFk+WXULNkRqWvdwOqC+Gr4CBAAngHNAJ+D5SvazYaPWSJLkHBjgP7NbY92CTd/2cx75xC/Q7BVl5YXZUJTB8J2n+SmqFw8mfcR+eSgL5TeY3HABPZon87luLvkaNzTIrEv8kAvGTpyvr6GNcS3/yxrHbQU/IUsafvd/khS9Es58PQpW0cpaVrCKVtaaCFbRyioKVtXKKgrWmlhZJdlCZ/M8Vu3qQM+0NUqwl6G3kkJm62g4+IoyXK6SeRyWRioW1fw4pYJX9FzQuUGbT5Qo8DJIwMut3sfNmMW3Mf2Z5fkMWVpP3k0Yp1hxhxxXzpsqUl+pw6tfNHgVjWxhQMKaUlbWGrF7Eux/Hhrcz9NemxhmyORRn/3Q/W9o9Eit66THF7QrmffWnyGpqBlTk6P4InUvu/PvZ3fWY/yb+j6JRuWfdrRoCHopnz6On9ay43VA0mbGu97FxoLJrCuo2WNguGYKWRh42hzHz5kLOViovDgGum2udt9Cizvrkj7ALOuJcFxOB+1sOutm0kk7k/ou6wAI1hwlW/YBJE4b+3LUOKRUG5FlJEJV4ml7BamB1etJRL12RXcG1TL711iJ1MKmnM8ZhK44fYh6/yjLQ7+Ut6yWtbyKYqysn+uVoCKBWtb6Wh0V/caXV1S7fNtl3az+i9+mpswZbZ3XajQ0j7Q4rfhySGRkWMAuH2/v5yTpUirN3JzUyNIqy/IfwvxxSZKaAF0AR2CHLMtJle5sw0Yt0Ol0Hf38/Oa+8eZb/hMfHKeV7AQHUf8BsGEwzPdlEXBebsfrlv0kEMHe4ud8vYvKNE4bjlF24HHv3koKp6zSrgGpdtZArcsVrCKNK3hnFtPSlPu+pvLLxNrhlVHWLUBkR6fq9xcp6xZQG0TBSsYRJsfPxsOUQpvcrYQVHOOMU2N8LUYYsEkp2Xr6e8g6pVgmT30NQ04q1aviVysR3ho7pU656kKQtltxHShKU4LGVGQZJIljHs1oNvgoi1eN4/609xkfspvdzeKU4KZaEJZ3CidzPpt9e6CtTWbFvDg49wt0/BEajudwavW7VEeu2cDOtMl08voKgNauv3MwZxAyiviWsBBgv5dGbkuIdFxKkN1+9haMZW7ud3xw+YevGbIMp76B/S9wsGgUC/M+pSYyxMOSSIB0AgkZA2d43HMcXtoL/Ht6BqeSx0FktU1gkh05mjeK4d6PopWUC+igeSj2RicKTB5c1DTFWD4ro43L4Hxo7YVqWcrmJq5LKrO4XkuoFlc78hlleQeAfa/h9sLaPu/OXX10tCRJd8iyHFtNMzc9tuICNq4JJEnS+vr6vhMQEDBx/vz5XmFhYeW2cc+Clhn7+OLQY7TL2gXASp9hfBT2NuvDWpdsp7WYqJ97gfCTOjrkrqdbzkqaZB6nPofIlVwZ73OKdK0/e9or25d9Qwd46y3rvF+iMhVFqmqpPGA9bIk1UvQBVcskirkndxaLysMtrMtaFbvlnw4v3Y/zoeWH6suWfxy4Rpn2XWddplp+lhcHEImW3Zjg8tuL1tMVg6iUdkKmpr1tlends2Tu50kG8i24RSoR8XoXxVJazDyPR7kt8w+c5FyytO64mYvz43p1gEG7GLBGpkfhPxT4pJKp8yJT50mMfSgb3E/DhuIvcVcRHfbpaVB4jDkXmnG4cBizcn4lT/biy/4fwblfFetqDREfoK98F8tUj2C+yV7NExMH1GjfFumHmLltHACdbtlJvs6pTvNeZv4airv9BQBMFjsyihqRQj2C9Ptx1SaRaAnnoHkoA28drhSeuII8qqTaJSAeAuz30tv7DcKcVrMz+j0W2D+HXDxop57vRiHmrb7yFQjznM9It0nky57sSXiB/gFPkZzbntVnfyenqB7mYoO4ffH7SpEwiq4GKAXEK1MdBYQ7rSTScQkdXH7hJ3k6G3ikJCeyXvAUXDLUOq9aDcda027yVxkj/niluFyp7ASqb/bds6zL1ACyTMGQ7pGhTN0zrctUv14xsG+mctqUyj6wamDpfrQ5YJ0X7zPXyhNbve+sqeRyUfv5zhvK9I0p5bdRBaZ6/1PZ1KP649fET/bOOdZ5MTcwKMFb9/6pzKsjWiKrK/he4jHb71GmZQN2oeqAuC47lJGoNgUbGZr9M/1zZrMxKoSHv89JT8nIfSQ7O/efyve2UalolSSpVvGysiwvr34rGzbKI0lSPYPBsPiBBx4If+edd5zFqlYq6lCPa14R/+5sQ2SuNdpncdBQhvdajMZiZmTMfD448D/Ccs4BSqL8I/QnT/Jgh2sfNjmMJkvjbROslQhWqFy0ioIVYG/4GZYv+Y4QDtGEDXzF3zwzdqSStSHnHGy/X6kNDkTpI8jXOOMip3POMRIZiXi7EMa2f4wBe1vhZMniUET5f8b5UGDDEIhbxjc+77PAfQItd7rxuY9yjhhle7YWPEpvn4WKAO4xt1wblaE+gB5Xcr0zwXk4Bu1J/Mfur7gUpEpeLH8eeIm7o2ax3acLY7rPIa7YsluXguLT50En5ePhcBoPx5N42Z/Ezj2KBGNzThTeyllnJXht+iN1eNBKeGyamXa6OdzC19Rz3E5sQXu2nfye5Jz2nGto3a4i0RoRnclIw/00dV7IttzHWJE9lee9WpFQ0I7Vx+ciFw/41Ua0grUYwcV6Vhve9SxaobRwrUy0gk24qlwTwlWWyQjMJEvnXipjTXXCVSXYeJqH0t+mQ/xMHvrFwXIuxWF1YkrGHYmZcl7lLdy8VCVaLdTcoi/Lsly7mok2bABubm53uru7fz1z5kzfnj0rthapglXMS+hhTGNkwix2BDfjoHtLHjz/K5NOfUf9vAss8HiIv70ex9OcjD66MalSvVI5E28mwQpW0Roj7K/ucymC1dOUxL/S25hOTyeBCE7Rlf0M4bm7h5ffMf0Qrx04yLvx1iCqv30fJlPnxYS8pdDuK85sep5GpgPE2tVjv2sXUvUGOmVtJNLQGtp/qfjDHvuQjCOf4yDnc6xgKFmWAHo7flncoTZKntO+/4KdR8VfoALKilZXKYHX3Jrh3PJJaPlW5TvufZakqD95qNPPLA0aUupBVdeiVUUVdOJDVz1/r7hoNRex78+7aalbzLHs0ezKeJLYgk74JivfuzrROjbjU3p5vMcv6YuJMnYjUHeAZ33b8Me5TaQnW5XJpYtW67K6FK1gFa6qaAWrcBVTdanCVRWtYBWuFWVQUEUrXN/WVri5haujKY+L/zTA25zEP/53M6nZnzUWrqCI12DjGV5Ofpi2BRuRZfhxPXy40jUlOjG/vy01VnmqEq3V52YRkGX5Qp30yMZNgSRJjgaD4Zc2bdoM+uuvvzw8PcuH9FZV3q9VcbDMkPTfeTrpRXSykenhD/ND+KNEuTRgdLHBraJAClH8qcd4+X3rMlWEbu1mXSZaSS4UXxlqDlNxH7W8Ilj9a0UBubn4Jtxxl3WZ2I5zrjJVy12CNbhDzF+obicuUx/Y4nDVUiEGpS4edI/t/YepZyeSp3UhuO27EHp3ucT45YiaDXseh4BBEPk0ZByGnQ8BsMRvBJE5x/hN9xkh5uNEGnfhoovjkHMnBmbMI8jRDfqtU4pGmPIgahbEr4DUXZAXwx7H3kwKXs+uDlV3oSZIwNe7n6BJ1nH69VsLVFJmc9s9kHMeBm4t18a1xnNCpi/R+vfG28pUfJirL11fP2Fd9ug06KybwT32E5h3fBOJuZ1K/LBFYarmJRXzsarbTXS7lRyLgb8zZjB9AiDLnJ/RlaIiH3ZuWVJK/Kmoglx86VP91tWyrwCnIpSpej2ANSWVGOykvrDJgsI50rz8MdrtVaZq7mXxGOI1qwZjiUJt3ExlKr6AqkL8TiGYallxfk8xaEsV3qIAP9pMmfYoE5/248NUSHXiTb3XiSL5WHFpYkOZqBTV9aemqC/YTQTvnFTv8u2pgY9lhSPAIKE8UUX3YPV/UjaIbUs3asxDQsZENSWZapwAmHV3xf2TLUaIXQIp2yF1D3g0Vwqk2HnB+kGQsBoTev7WvMPxs9ZsJeq9WDwn1Jc8D2MaU09OZlTyfHBvDk1f5KXkJJrlHOTnvJ5se/UrnNp2XJ318zeDZJsfZwmVPm1kWb5Qm7//stM2rm8kSWpsMBgOvf7667evWLGinGB1z6qZYC1yzmNq7HhOOjUndMQ5/tfmw9oLVlnm2y8382B4C/7XQmKw+QtA5njPczS2X4GdlHNDCNbLxpjDP2vG8/3JUSz2uZsBrY9Bg3uqF6wAoXfBqFToNhO8O4BfH2j4IGPbL6RvymqWaZ5ll/1g5jk9z8TmcxgXuYUP633KXZE7lEpnCwJh00ilDnijh6HHP3QMushtDWJ5OWBetYevDfu92tA1ZRuc+QliFtGxYAV6udC6QcwiiJoJTV6o0+Ney+TjjkYyk5xXSyVTjJ/uGGZZMJtKErExY3B1O1pHPby5eOSnipeXVTWVDZHu6Fx+WVmRVtYVqKaIVuWq2isrkgFWCqM8ar7ebsJ7oRrkKo5UQelc1NXx84PWeTW7g2hdVa3oZfs3OmYhbL4DEjcqgaExC2FJBJz5QSlJ7VwfXYevGWt5GbmRNZWLOjInvmg1VDzXGB/zA71TV/F8+BcwcBuEjOLDdpN4ock0TrQbh+fCjRhNpoGuHbudkSSpdilIbmBqmvIKAEmSBkqS9JokSd8WT6uPWLBhQ8DDw2N8gwYNtqxatarRE088YV8200dFaUpKBKts4dGtq7k97WfuyP6MWUcV09d9vaaTVZxWqDaCtWvqJjKXabgnrCcGB6W0VHZWE9oM78LLfmE87H0bkzz7EOKwBZC5UF8G5OtSsF7Wa3phKvtX9KdHxmrubbqatxt+xfEwp+r3qwyXBtD5ZzyNaVjQsNZ+XIWbJesDoPNvUH8sxCyAzNIiJ0UbQJOCPXibEi69L2X4rcH9/BF6L+yaAJtG8EH6bbyfdhsOlhzIi4EdD0L441BvRJ0d81on2dIIjWTGzS7qkvZfmvUxHZx+ZrjbZBzMilKQLXY4OsbQst2j6HTKRa/V5mIIXErT1s/RtdW99Gw3nBZhU9Br//tw8IqygFSULWTAmvLLRIGi8reQxmrwMmUqFiJQ7xnqFKzVsjbXYIhcparrXHzxV4VrU6EQSEXWz5oi3ltV4epdJpNGu32lh8uvJ+Fqby4kU+8Gg3ZBxx9gyAkInwR7n4Ez06H1h2DniUbSkItnKctqREwGAANP7+bL+AFMTn2WO45u5JGLX/JH0ET+CJ6AX4o1kVOiQfmTHBxw/eh7pIcnN3Rt2Chap9NZc+HdxNS0IlYgsADoACQV/xmK//YAt9tSNdioCkmSHPz8/GZ07Nhx4J9//unh5nYJmZ8T1sK6/tbP7s0h8wh4d2axsQnv+v1SKsem+FBQI5jjG2bQu+BvBudPJ8Jkff3fmfw8zrp4vD13Yk8un2nmk6n1YoLpUVrI68nCGzdNFth5Q+jdvHbsHi7QBqDUMdVSrupwKViH+cQH3PyR1vkxxUO0ogXkn+IytWJOSJccZSr6poYVl/UQy6yKPobq0GdZn9lEQw0r3ZiLiP6jB06aVKan/ku6OZSP6yAr851zLDxlHosrKbQYqwzFV1SSctAquCP/E0bnf8h4zygWDXJGAjyK0vlz2z0MjlvOYu2z/K771Fraty7JPK6ccwVJIJuUc+6WXVUHal2jjC42SjcTtL/o+/nqu+X3aXYM7C357DvkxKqDy4hJva3kuhLFmfoCdkFwKvNKs873zJtPs+73c7hwBP+k/I6WQgblzaBl2BTkQhcsFntc3I6j0RqxmOw5n9efPJMPTT1mYcrx59Cv5zjR2PpgV/3SwTrkX18Y71PTzKnXDEDz4pLH4tC/Kggf+NW6TB2+FxF9VdU2RcEHMHoOdBUqaKkWNYA/i9/LHvjNukz1gxV969cKtSHUJ7PqM1pWBJb1xa2IilwGRJeXnOL6HrsF9xpRrFXkk1m26h5UXKVL9Mkv64+vlsMGWHC7dV70z1/bt/yxa0tVI3YiL3xine8Ycxw7XSbT7wgmWReILGm4NetPXk6ciOOoBNAraRjvnAMG+RzN5bUs8HiYl3PuwsFUxMf6BTS2bOUO+W2itU0ZUfglB1060CT3AFt9u+FbmExz9QW8299Qf0y13+PMmTMMGzYsLSkp6b3U1NTPbmZ3gdoUFwgAusuy7C/LcktZlv2BHihFB6ZdqQ7auP6RJCnUYDAcePXVV4cvWrTo0gQrgG8PaPgg+PdXKiS1+VhJIp+6g2FZvzLwsDUDfmygjCQrznLqw6x54FfMTfZnQs4LpQQrQKT7HPI8c9khjeFdzTpO6DsTr4ngbbt1vKDfi1uHqdB1JjSeTOzxFbyraUtXZt7YghVY99ObGHTH+Sl1FenmSjaqJY/Nuchr5gF0kBeyRvMoUF6wgiJYAToVLWG73QgKJcVhsn5OFNtWd6V93HH2aW6lsWV7+Z3rCvcmcMtu6Pon9Fqm5Ju9DgXr5VCocSQrvyE+rqWvGQkzLRu/ypA+4bg6Vl0UMTOpK5LGyIXC7gCYsed0zARW7dpIfm4obp6H0GgVBa3RFdLAdQVNPWYhSRaSDj0Ock2LN16b3DOz9vtUFwEtBpPVps0S32yBDrsr3r6i61Kkoip8qlAUhWrZoNL5glC9XRCw6wSh2k8QsJdKWZFaPyUdLvwNR9+HnRNg3UBYfysfd7mbEe5PMMTtOUZ2aMnwtl1Ydr4eP13shos5g5P2ioEi85/6Snlo2cLfYyBJasg6zSO4Z0n4WaKIslPMww7k0ta0hhGFX3JW24pzjo15v/7HPBi2jha3HablrQf5JvxxOrg0qNH3aNSoEfv27fO67bbb3vDz81ssSZJz9XvdmNTU0poHPCjLcrnLRJKku4EfZVm+aX9EG5Xj5OR0m7e3929z58717dy5AmeqyyEvBhbWK7WoQHbGQVLG0GM0EbybeRIJC4bgRUzKfpoYXQRbdy1gTHgfXOwusif1Kc5kDeXfyGYlUZ+mMs9H0YKnRJnK3CtNprNxITNOHqTA7PWfCFawitYwQSOoorUiwQqlRatqORFFa6UlGc2FmGe7IKPhQP5Y/s747fKtrAUp5MyPII0gvtLNJFpqyZzRlVtZkWXmp7lhlOxx7/kbZB4n8cQnXHCqzw85S2ko7+MV421MtIvhx1GBFR3RRjGj54GXHMvdCT8A4KqL43Dag8TkK5EslVlaAeYtnYTBfTvL96/nvJ8HDpp07nG/G4P3RnJyw5C0RSzcfoSoEGt0lmppbR84lfZ+n2Aq8uCDlJOYi8uYqgU7WjjOpU3PMUSdeJKMk2MoygvgYudjaKVCUgua0HKlciGpw8VQ95ZWsFpba2pphdLW1tHF17NqbRUtrVDe2iqmylKtraKlFa6ctRWsFlfV2gpWi2vZofuyFteKKvBVZtW8liyu83beSs/Uddi7NASXhuBcH2QLFKVDUToXo9M4VTiQLblP0Sb+NH0i78XinIlONuIsK//483aRNBi2o6TSnRrM+KGpNZsc72CW0+u45MAk4wMY5Che8FR+aPH8FSsoQu3ct3766aeiV1999WJSUtKtsixX4IxyY1NT0XoeeFqW5UUVrLsd+EKW5VplG7BxYyNJksbX1/f9hg0bPrJkyRJPX1/fKrdXb+QbepdeXmWN67wY2HInuDdTqijlni+1+jOvr3GyZHFX0o+46y9wLmcga+K/5tG3witpsOY8/XMKbzq0wokMzJnBWCx2JDt68W/6u1wo7FHiIyVW0hIFq5pqSrRwbOuqTMUIYnG96selCmSAgauV6SIh25QYSa0O5caUeVjU5CY5cgEEWU7wuPEh0lwcGB+5ttT3EYUDVJ7epZVgjc5zMbL4UHtS9QampVvV/B/3KFP14aJGcQOE5p3h6dyHaWnaSIq9N780fJDP679Jns4ZncXI2ZX+/OT9Ji8MmFzr73ij8/Zb1vlGUQXc0qkHLvYXcXBQQqbXnfmR40lKOPoT3yjbib+bKngmrtzHR+kD0GIkM6M1vi57yTcaOLR2AUUFvvQaEcaxXd8Rc/bBkvNXTVk1tlUzUnNas+38Z+Qb/UqucVXUOWuSeNy7B56Op9gU8yF7El8ESrsX5Fdg3FbTX4kZAXyTrfPqi5uY5UC9LkWf8DjhXUe9LkVhql5vkvDDqL6QYPU9F33Ufyn2mxwnWFhFK6L6ovo/oYSZ1qxM1Qh2oFSqPoDFQ2H4Yuvn1geUqZgqqqzo/vnB0i+F4guxOq/6xauULSU7cbp1Xs1CIVb6U9OKifcH8TcCJXXUq+9ZP6v7ry9j+T1R/FIxQlAbCyvIplcV5XJKtwWKMuEfH+j2F4SMqllDebEQPQ/svRWB69GyVFnmnpuVQgGdClbyZM6j/B18L18GTgVgTMKvvH32SUZ1XMEuzy6YNbpK3RNqy/79+xkxYkRKWlraY9nZ2XUbjXqNU1P3gPeAKZIklXr0FX9+E5ha1x2zcf0iSZKrwWBYd/fdd0/asmXLlRGsAE7BStqh9l9Dmw/ZWFwVKEfnzEVdOM+mPcmE9NfxsItCkmQ87M7XiWB9+GfIwYdXC05xbtN3xJ18hOO6rjRw3ISzNvmyBKtIRYJVRBWslSH69F4qsZpIPOR4Tji2okPWJpzkzOp3qgKTRs8nIVPpnvkvdtQsd3a8thGfOP/OOy7zCRoRy0ttPiJP51zS3haXIXTPXXpZ/boZCA/+ETenU2zcYjVj9Wo4iZHNKzj5ynBG35a7faP51eVd0vKas+ns98w/uBOfgNX0vSMYi9mesOZTkTRF5fa112WQkNWdfGPpJJh2Ujajve/j5aAgDidOAsBJn1hufxs3F5EVBMGNKGcuqx3t9gHxq5TRtICB1W5fglMQRD6lZEox9CglWEHJI9uqcBMfpQymXsFFtnj3LrGaL/Edw073Xqzc3pPYla78sP8+fNMLKzhI7WnTpg0HDhzwadOmzY9+fn4fS1JN0rjcGNT0iw4EvIGzkiRtlyRpkSRJ24Gzxcv7S5I0p/jv7ypbsnFDI0lSI4PBcOCzzz7r+sUXX7jodFX7ol2yYAXIOAIHX1VcBLaMoVfSJgBSCSZOpzSgkRS/1uSCpnj3eaumX6NSHv7ZOj96pjMJp8fzm+F5Mkz1yTb5scF1BHDpglW1UlUmWFWrjyhYK7KyioL1Uq2sABrZjDcXeTDxc2ad6MWfmf68mHsX6U1KP1mqS6IN1iFQk6SYvsqK1ooyR6iJ5pO1Ibwx7HaKtPal1kecgv2OPWmbvxG9ubxgsmElxG8+0Yl3kJMTwbHjb3Dw0Gck5nRErqG/aIHkzEKnyWw++x0OulTu7+RHZFslJ2Xsufuxc0girNkHpfaRMGOvTafQ5FGuve6uXxDpsIxdORPpUf8ZTBYHTJbLyEpxhZGrcTK1r0CPiEUE+lbgo/nB/6zzak5XseqWaDlWWTTMOq8WHFCLL4A1O4HKQ7+Uvj5Fy7I6n+1aep+7yjzFp02wzqtuDaIlfOgSZarmtIXy1vGBa2DqK9bP6v591lOOyJPlrau1Ea4V5ZldcXgRGHqDvo7MncV81b8Xu+0HsMVhGOt9lYRKWW6Qr3Xm/mZL6dX+BM+0+IFBSUuZtWcE/ul1U+jK09OT9evXe4wdO3aiwWD4V5Ik1+r3uv6pqWj1AU4D24ACwK14ug04A/gKf5eROMPG9Yyzs/Og4ODgbStWrGg4bty48rVYy3BJgtWUC+dnwvJWsLwFHH0PCpU7+w7vTnzj+TH3BR1itcs9ZBmD2Z0ymd/PbcH3gSMQOvaSvldFjCsTWBFX1BZXXSKuVBO5cJWp7ZC5RdIyvvFa7mi6k3FuCXztNB1/yzn+3dmGNpm7qm+gDB7GVJ6Nfo3jci9y8Kl+h2pwsOTyUOo7HLdvj1FT7Sl3U6PT5uFoH48s6zh24m0yMlvh77qDE8nja91W+5C3ORo/kS1LDwAQEv49pw+9SVjzd/FwOoYkGWni+wvtgt5Hr80nIbu8NTfEfhvH8oezOP0bVpyax86YtzicUknmfBvXJKJwValKuEJp4apSkXC9XETh6mDJo1f2IggZXfcHkiQ6RHSnZdFmbtkbVbI4y01Zd86pMcvcxzO4ywYGJK/kxJpApVBKHaDVavniiy9cP/300+4Gg+GAJElhddLwNUyNfFpt2KgOX1/fF+vVq/e/FStWePr5VVAL7xIZM9dCC/lf2rr+wuD08kb8VDsvXm/5DvNCRpHsYPhP/BjvmG+dV/3Z7nCaTHvdHH48fgbHDGtkg+qnBtbqLp2EIAbR/1QNpFJLYUJp645qZRWrDonbqoFfasAJwJlGylS0Aok5CdUgLtHvb9UtlEKmdDDF6HlmHnYfSph+E3sYwVz5fUxZVkfcskEGSwdDiyPQJXs1r8Y+DkD9W1aCa8X314rS54SfKb3N6eLvhSkf1valIPUQn9vNYrdWMc+I0ck3A6IRULwG1FQ+nXZCUOBcunQaQ/TOt4nZ8zqt7myDs89Bkk+O4/S/f/D7fUorP0ysut15o2HYYE8OHv4C79NBNLxrAGajI1q94sQYE3c7CYmDaNf6McyyjujsfvyZsLyknVuKs0I06PsIku85tm5aW6qAh5vw/z9fHFxdUcllsJ7XYhov0b9TrfgkVmdSg4zEMrHiNaUi+myKwUpqMFRFuZLB6g8r+nyLwZ3qfaDXRusytToXWP1UReupmkO1geC2L94b1CAyMRhTLRsNVj9UMSizreD3qQYJiQFnYqUy9TuJeaQzPKzz6n1MLLMrovZLLKkLxflIhc9l8+OeaFz6s7itGuAqVsiaI2SPUvsUfhq6G//m2fx7ad4rgQy99R9bkxGiGmEugDU9uJAk81nOFgascChZpQbX6cnjI4Nyor2Tt58YS2vAWjkOYF4ZV9va9G/v3r2MGDEiOSUl5a78/Pw6yL1wbXLT+EHYuDJIkqTz9/f/vU+fPq9s3769bgSrKR8uLmDD7PHMMWp53XRLOcG62eVWJnScRsTQU3wfMemqClaQ6aifSVphYxwzrE+/G0GwQmnBOmoeyGiZkTWHP/iSEOkgH2oiec0tkhdd23Ov7zA6GK3+pQ5yDs9umcf35wYx/fwtHHNsx72NttVIsNYInSMM2Mw67QM8WzSW8cbn6WReABZj9fveBOilXAa6vkGHdvfg5qacHCGd3sTOOY4TK/7hzPrp+DaeiWf9ZdW0VJrcvFAMvmvxafcVuTFd0OrzsZjskWUIDlxA+zYTOXv+Ub48UMCCs0rbdlI2oCghnWMiIOHtuxG9PqMOv7GNK0llolRFFLUVoboRqPgllX7JOllGpJb1bxW3VUvoiu5TakYWsN4rT4dDL+Ms9upuJWK/8CZC9Sm9aozWAbrPpb7TeR5yHsO6W62RfMUVoTHixKrc18nHBW+3PUgoDwjxhWZUmZCq2vSvXbt27Nq1yzcsLGyut7f3o5f6Va51bKLVxiUjSZKbwWDYNGnSpJF///23u729ffU7VYVsgTU9YI4TbB5Jb8vvAGRoPfk24A3uabiDNs1MtGou03PYcn5sNIE0e8WEcvUEK9S7KLE76XnquWzCQa+UxqpIsIpUJFhFKhKsIhUJVhFVsF4ulf2uRbILm+SHeMuymzl537K98CHizM3pZFpCiEUxe40q+IB5OT58GD0WJIl7wrbyYv3ZbGpddWBedZwu+900On7Rf8lC3Ys0MW/mJeMY2HIFhgGvNzIOM9mnE12cfsDePoVmTaaQm6skeYm8bRhugZtJOvYISSfuo2Gvx2mrm1vjpk+eepn6IX+QG9cF5+DtxO96EVO+DxaTIydOvcD6zRs4cPhLdFIBTbxmMi54IC+Ge/BSIw/Cb7uDdo/44xU+h5joezCbL/O+cYWoaOhbxKmaEd72e6pev7FX1etFi7FqHVYtz1A6m8GvDyhTMc2W+IKs+qGKBSH2CcPnamU/0Xoqps0TLc2qcBWtsuLLdEXCVexXWeEKV1a4amUTbc0rCDfv4a3cQby25UcoHmF2MuXgnyiYlM2FSkGRS8ElFPqupqXbXp517c6O26JLVqnCdU3ua2SaQphkeoQwT2u+r7oSrgEBAezatcurY8eO7/v7+399IwZo2dwDbFwSkiSFGAyGdV999VX9O++8s1aZv1U9JqZ7+W4SOJlyObXGH1dzDgQOVooIBA9Xyn5eQzz3hYm73cbT3G4R9ppcNu1eSFj4lwAsPrKWuECr4hSHDdUSjeIDQHzwqA9BcQhPfPBtUpIjlHpYiENL6nL1Rg6lh1rFIVJ1OFJ88IrD+mrNbHE4UhxOVAPGxNKxz+XeR6OigzwcsBuXTDvuKpjCmMKpDA1JIFvryVnBuCqm3XEosM5vL04FdIsQaKaKejENkdhvNWftH/cq0/vP/sp3eybhMSqjJHDrcu5yleW5vFb57nFo5v8d3Rs8Q0xud5Zd+AOnBD/u6BpOSnYbTHvG4h6yBt9mP5H57TpMCU1xHT0Ju1b/sGnRaaIdrP8ocVjev7haroMmDXePg3Tv3ZfzG7/Go/5KPENLW2ozkzuSntiDoPCf0ejySbw4grjoO/H02U5AoxlYZDsWHdhCdpE1U6L4Iqginr9iXXv1XBCvD/FFTT1vRf/KAuuIbQnicLR43YkBUGqVLzGvqmhxVIWeeF2L4k89f8UXWbHMtCpI1UAsgIlCuR4xBZ7qkiCKHDFoU/0NxWArUXyqL7viS7EYtKmWf7YTYhqbCBpOzEvbU4l7rdANAaz/L/G+Yyzjdq6mulMRBZoYbKreL8R7Rdm23nu59Gfxuh19YQ5zsk4wN+E8I1L+ZLdrDzQFTnQuWoYZDRs9b+GT0Hd4bePvdHX7isO5o5mdMpupL9de8w3fFMuHScOolxvLktMLScjtXBKY6+J2jJ5Dm7Hccwy3D/y9VGBp2ftKZS5RXXaUXr69gvTnFouF559/PmfmzJk7kpKShsmynF9+q+uT67vMyCUySBokp5BS5TZ72btKluVBVW50k6LX61sEBASsmj9/fkBtCwZUJlgB8nTOBN+aXWe57K4Ez3wBHR3+oJ2DNcQ3K6cxcVk9aR7wbbWCVaQiwVoZqmCtDFHIVofoP1dXSLKFTvkr+M39DUyS4ixYKDmTofUlW+NR9wesgmjnEBzNBRxf2oTmg4+Qr7t2I9KvFG2CPuZ82nAWxMwGNHjbx+LqdJ5NR3+lc6NpaPQ5WMz26IL3Yzzbi6wZf+M0JYKQiO+Ijv60XHteTodp1fJHvLx24OVlVUm5yW1IOPwEAa0+JyMgm4tJw/FNMdO44zMEhv3O6SNvEHtuPMYiL2QJEmNu59+Uj6wNV1f2yYaNOmBu/TFIQKgr/Br4FM9feJW+RcvIkrz42uU7+pu/Zfn+9qyvfwukQwvnuchoeOODX5nyv9pVwEvRBTHJfzOvpYxnVGRv1pz/BRkl+W5OVlPm+DzMgPQFdDuawPqW1pc2idLC9XSj0sI1/IyybHvn0sK1y47ywlWj0fDZZ5+5REZG9nj99dd3SJLUR5blasYOrg+qfY2QJEkjSVKQJEku1W17vZBCCrulPVX+QR2ENt+AODo69gkMDFy3YcOGOhWsKte6YAVw1Sgmp7yCAJZtOEaMPpwG3guINnYs2bYywapaYyoTrBVZWUXBWpGVVVxWnZVVFKyXa2UVcbaLw9OSwlH7ziX9aWLayiGH7iWVxlQqs7KqVGRlrQyxMpjKOv9+9O63noa55wnPvukKxgBwPm047g6nUW/xLg5KuShXx2i8G/+FxehMxvkhFB4eoewga4g6/jQhEd/TqemjBHhbCz808FrI2NYtMRjWkpLagyOHPmTn1gVs+Hcn2QmK70v8wWc4dPYN0rNbkZ3Wlj0r17NpbgxRJ57BWFTaj/BGRRwJqAjRktqlgsrDoiV22sTy60XEERa1ipWIeI2JAVUVFUoQLdxDit3RxSA10cKtBraB9b5UkRsCWC20YhUvfRlXc6XCoBUx8Gi1kE5VtRyL1vKybb3yfunPFY2IRIXCcefWPNR0GWFdTNzpncBGhzt53W4j9zRfibcxGRkwyToaOazmYb++vPth1QausmztCoUaJ97w/Zs/PF/k1rBxePV+E5BxdjvO0OgVeJpT6Zu5uFzgWdl3uLKuUKqILStSy1pfVSZMmGD/008/NTMYDLslSargzn39URPbtwaIArpf2a78t8hS1X82yuPh4XFXaGjovB07dvhERERUv4NART/p9SRYRcyyMi51LvohsnKaoNXk46BLI9BuH566c9XsfWMiF/+HLShP5hDzUVqb1rDfoRrHvStEh9TdpNh7c8T9CpiVr3E0kpFAt03kGf0BmSDnrXRvej8XkweTW6gk7c1Lbs3ZFXOwpIWW7HfxzATOHX0Jf+9/aR2h5iWSaRf0PqeS72LNv0c4fPhTzpx8kfi4EWSkdyx3bKEXyBa7KtbbuNYpqsW/TxSuFVG2/GxVVBcxX5VwLUtFwlVNqWiRtJyIKPYxkCSSEm9hcJs9/GO4F61kIq6oNc6aZO7xvV3xda0FW7uCLGn4yXMKb/v8SfuADwgbNBaz2QmtpoDEi8P40/cJoHzGhEsVrpUxdOhQ7aJFixoGBATs0Ov1FURAXF/UtIzrGeBFWZbnV7vxdUA7qb28U1e1l7zeJO2VZbl9lRvdRPj4+DzZqFGjt1evXu1533qruiwbBFQuSOYG5LUZh5mkG8MC8xSKDowGZMbWuxV394OsXbePHU2skQjiDUn1XRNvumLpR/HGrlpBxWANMQWP+pAQCweIfm5Jwo1fDYIQcyaK+4lWG7U/4rbierEPCf7KtOcm0Et5PNsgiB2me9lQNJmnnPsSZd+YN1yXYZLsSqyzogVa9KVTA0TE4BO1FKZK2ZcaMdPAc8Uj2r52Rxno8zxhris5lH4fy2Jn8PJ73FSs/vAHBtZ7jPO5fXHSpuDncIiLOT1ZdOFvJkSGYafNI+HQJKK3fUhAlGL6V61xOp9T+L3YmOhzD3Bo5y80YR1hY/tx+rc9ZKW1K3cs0V9SfNlXS3iKIwdi8KEYrKNaGMWAQzGwR/SbDo0qfyxRuKjZM0T/adECKt6vVL9NMUhIXC/WilevLXFkQLRQitex2t+/hLTQwUIGDtHyqY58NBKGgcWcpep68fuIPqZiuid1ZEQcfRAtquL3Ua9j0d9UHJkpmwLsh4kw+WvrZ/G7q76tlbUrHle1mIo+w+KxxFEcteDB/jal+1KRcWPCj8pUPK9Ev17RF/fPYj/a0WXiDueosZuyBZY1g6wTbNWOprV5Ffu0t9Jj1O+grd2LWLdtyrRFwVY+jh9BsiWMvUVjGe34NG9lnyTJEsF3j1W+f0XGnrKKrWyg2onG0EGQN+p92njmBIWPjMjLiz7fv7CwsAJb//VBTb2MPwRelSTp8sJ+rxWqsbLaLK2l8fX1/V/Lli2nbNiw4aYXrPfPgBha8IrpeLFghcjU8/j7rWLnrtk3hGAVqU6wqhhlJ2YU/EYf+69506UxKXoD77r8U0qwVkb4ZY7gd07bwjD/B5jcIJTHGjQnzHUlAEWW68R0X8dcyO7HzsQXKTB7cjGvO9PPHeSvsxvJM/lzIFUZ3vBv+R2NBtxXbl9Jr5x8en0GHXsPouGYW8g4eQf5ieUFq42bh0enVb9NbUgWlIT4MlMRbfaX/lxVWjwxQE50kRDdGlTmlkkwMkYVsZIG6t8F9r60My/FjgJ6mP/m0NxboSij6s6WYWtxTY3DDt14MHgndlIeIx2exyjbk2FR3tonfV/5/hWZFMvKk7K5bCNPwm7B3KYGUOobReLw52onl9CwtU5OTr1r8z2uJWpTxjUAiJIkaZMkSXOFsq3XZelWm2itGQaD4d0OHTq8tHLlSo+7VlkV180qWFVaHQStVMjIiAH07N4HgGZNXyPcYQVQsWCtjIoE6/XIIdNwfsv7gx/z/uFp953kaS5dNEpY8CpKoWHOaRrmnCYkL6rcEJ2bMZPPDj/Gqm098NSfxYw1nDg6twfrEz685ONfz2QUhbMp/kP+iZ3HysRvSSpsCYCdJgtfR8WUnXxiHHYuF/Eacx++j/Ql4G0PAt/X4ftUWwoLfPANWI2x0JsLi2cTvXBOVYezUQlj/6r5ttWlqBOtp6KPqZjqSUW0yorPMjWtlYh47xEzRVQkJL960jovjpKIPvdqmjCxXfG4opCsSLiK/v/iqEx1wnX6I9b56oTrPYIfbaXCtcF4sBTi0GAMyVJ98nAlWD5OzD9dIKuMabMaVOEap2/IvaE72WSayCbTRIqwmpj/K+GqCwrBftZaR+fQsOXOzs7XZaB5Td0Dqi2yJstynzrp0X9AO017eat91e4BjgU3t3uAJEmSwWD4tEePHg/Onj3bXae7KRNNVE3SJvi3FwVGT0DGQZ+BLEtkfrwHc4ySBFHMqygOLarWTtGSKRYBEKvpiMObqp+ZOOwnFgwQh1hVASwWHBC3FR8aYvoYNWBEHMITrbdi0JY67Cl+TzHgRHy4iQ9eNTWOOISnintv3WnuMowmwF7wFUBJS59OMFkYcJPi8ZQTSJf8OXDwG4K8VhMZbDUH/ZyxiDNZ1iLt7/+Pm5qZ90DPtiOo528t4F5U6El6TjOy8xpxoag7RrML/i7baeL5FzFnHub0gamlXqJEIaKey+L/VzyHROGgDv+Kokg8f0WrvZh/WB2+F9vtvsU6L4o3dZRATLkktiWKl4ryiF6wBnGXqkQF8M/I4rYrsfCpw9Xjfy+9fEaxIbuyamUV0SDKOq/6XrY4Unqbw83Lt/vZs8p0l+BmLLpudNtqnVf/d4daWpeJ6bpEdwzx/6/+/9RATSj9v6soDZ3oJiBe6yLiNuowvtgH8X5T1s+2rP/ra1Ot82IeWvE+65eoTMXqWT02W+dV15bOlnk8ZxrNuz4/MzntOXY79sfLnEh40UFcesyEoCEVf6FKEP+3UE258itMcnIyvXr1SouJiXk4KytrQfV7XDvUyNIqy3Kf6v6udEfrEhmbpbU6DAbDh3369Hlozpw5NsFaCX+8H0pGXgQO+nRSF00n69go5Hx3XCcMQ+Nx8ZoQrCK1Eawi1QnWmlCRYC2Lp+48fT3e5PGg1jhrk1mV8jGzL1ira2mALAwcpS9z7F/jXcfFTHI5jpN9LBFBP3I63jrc/ZDHcB70HUBLp9k17+QNzskLT3IxYQQ7Nqxi85rt/Lskmqi4e2hU7zfqe6ykV4PHae7/A8mxg4k6/szV7u4NSW0eLWVFzs2EKIyromzi/XdfrfkxxCIEm3uUX79DM4oVLvdyT+bHTPX5lX6585jj/hSpWn/YOBQOvan4v9aQsiL1av5/fX192bp1q1dISMhPrq6ug69eT2rPDVctoUbYfFqrxGAwvNmlS5cJM2fOdNNobs5TpDq+nwQ5hSHM3neMvItdCbx9HNnH7kTSGJHsc3B/rhOStnzEqehPWhtqE8l7vaHFyFi7J3iuXkP6ek7BTpOHmy6OW3xe4I56o1iX8D7JBcrYXgP2cZ52LLebxD7dLQwv/JxOEU+z6/RnbD42g+cTjazPfZ64ola46WIZ6zMWN20t1PUNTGJqPzbvm4dWm0tA8Hyat30Sg5cSRePucJr9cS/w294Yjmz/BWOhLePftcLhWiTA6LjLOq+pRk+1PGSdF1+ORcGYV0GKY9EKqg47l91WdVEQrfOitVtE3Eb0PVX7oQbfQemiB5WhClcxTZ/o8y++vFckXEX//8WF7xBoPIe7JZXlLvcxIe11AozFHToyBbaPr75DAteScPX09GTjxo1egYGBMxwdHftfvZ7UjhpXxJIkyRUYDkQA5WqLyLL8Yt127crRVtte3uRUtXuAa87N6R7g6+v7Yrt27V5eunSph83CWj3THgU3h9Pc3qYT9tpMZKMDlpQwdEGHOT3FCBYdW4qTxYkPAzH/qDiUKlpZVaunKFjFIU8xzYw4vCfedFXrqzokJrYLpS2gYhUfdShP9G0TLbKipVZ8GIn9V9uoKtLY3i6ZPj264+ailIzJK/Qn+tQkEmOH4th8AR2Dp3A06UE2nv4ZT8djONnFk5rcE1nW06PJA0QE/MYfBT+y1fgQOS7K26ZaMvGB/srnZTE/cyhDSUVws2USUHnoF2UaJm3jFftupGW2Ib8wAG+nQ9g7xbFw63Gy88qnsRPPFVFciDl8K3rJFwWM6GYiVoJS2xZHJMRzRQzgE89DdaRBzE8sDlOL15MYPCiORKguAOpQMECKoNPL+n/+rzgHaL0K3n/Ecq9lheL+1sV9LrOPTOkIb/H6BFhabPuqyCWh7AjH0QqCjNrtK/15b9vSfRd/T1EUiuJV/B+qbiCiy4GYxUAcKRK3UUWt+BuJZVrFc0fMNCG2obpzlI0N2Fs8/F9dxTrRGitmSBCDYu8sE5XzyXPigZ4h4/BC/riwgYcbtsZRm0GmMYR96RO5mN+N+16uPK2f+P8Tf2eAgy25JkhMTKRbt26pFy9eHFFYWLil+j2uLjVSJZIkhQFbASfAGUgGvIr3TwcygetGtILNmloR3t7ej7Zo0eLlxYsX2wRrLcgqCCczPxyD0wEkfQG6oMNk7plQSrDaKI+n+14G9FZUrixLrD0+m/Mpt+Mfp8fTexsdg6ew4+IU9sS+jAZIz29Ken5T7GVwczxNRMBvABTKzrTVzUNDJlG0Qa9tRIvQj9h0dAY9m41HksyVd+ImIw/lraewyJeLCSM5uW8+IJEdcAOb8m3YuBzcItFp8sky1mdBzBzurj8Qd300+WYvovN68u7r8No7tW+21aFrQ7j6+fmxceNG727dui3Q6/W3GI3GfdXvdfWo6djv58AewA/lxeY2wBG4B8gB7rwivbtC2Hxay+Pm5jaifv367y1fvtzDzs72AKsJ0x5VpnbaDAxO+8n+40+kYlNL+vZnSwnWS7WyilyqlVWkNlbWmlCdlbViZMLavlYiWGPiR/DrlmzOJY/BP04x5zq7nqXI5MKe2FeQhXdrjVSEh/NRLLIdRrMTFlnifofxPOBwDw9Lj/Cu1J57+njQqsF7BHmtpsDshk6qXWLwG5l4OZLNe+dSZPSgfdPJtBk0AK3uOk5ZUQ1aqZDG7nPp7vcmI9p0wMdl72W1F5Z3gi4Z69HKJqRa+DNWxO5LHMcr62LU7FjF25XlorCfmBtV9FMX7yUVIVqSKwqEK7uNagEXLd5iZhXRP19MfSe2od4jk8oEXanW5LKW1bKPbzFYSwwGFOMM/i6jYJ4XKxnnReNiUHwizucOYF2iYna/LeAx7qw3BFddLO++ToWIOWXF31ml1aHyy64GQUFBrF271sdgMCwvNlJes9RUtHYEfgDUu7+dLMtmWZZnAZ8CX16Jzl0xJGX4oaq/mwl7e/tu/v7+P/3777+eTk43X532yyXMMBssOoqO3UbhoeEkr/4YY2rj6ne8SanX5BsatFLCfHft/4VtuxZgspTOZq63S0OnzeOJzjoaei4gxHM5jroEJnZx4I5OzckpqM/vG3OZlGPhiZwinswp5KJcOg9bA7/Z5Ju9OZT+wH/23a59JC4mjGLr/r9ZsWU/Ds7RNOt1N0puhusLf/dN9Im8h+7hj5ZZIxPq8w/9mo7mwYjmjKg/hm5+UzC47cHd8dQlHEmG+DWw7T7W7mnGnEN9ObXFiejNWh6J+awuvoqNK0xlwrVGGHNAo+PVd5WPO1OfI7FA8S8Jd1nOU+HBuOoq95uvTrheK4SFhbF06VI/Pz+/9ZIk+VW/x9WhpimvMoBhsixvkiQpBZigVseSJKkvsESWZeeq2riWaKNrL69zq9qn1Sv95vBplSSpaXBw8Ibt27f7BgdfYpTQTYjqJ6W3FHF+fji5x0eSsvLzEl9PsYqL6K8m3jDF4ADRX0u0dqhWFTElj5i/UGxPtHaI1gzVotpeOOUr8x/zqaTMtmiZUSsQVeYfJlqPxVrk6m+jd0hCbriXtJTumEyuJf51oj9dvUbTCbrlUSTBFJOTEYmLh+JsuP3XVEyFXvQQfGQpTIW8WMZsbMQI46eEWI7Qvf8L4H3DX8YlVJZeqbLlM185wJ1Nu3D8xGucOKVEsIi+y6LPp+hvKvq3iuePep7kOcklRxVHFsS8ouK5JuYpVY8j+l2KuUfb7AdJMnFnx3D0uiwc9GnkFfliSmhJ3I43cPQ5TEifJ0mOHkFeViOMdhbCG3/KlnNfcCj+KaC0/6p4PYkjBOq11V43m0ccxrLduzOfNHmef7w7Qso2piWuY+TF+fiNTCQo1vojVJaWSfRv7P9v6W3+GVm9byaU9s8Ug6BUP1fxfiCmcQJ472VlWpG/a1nGFifdEK/7yu5d4m8pjt6Ilkw1U4qYZuq25dZ58Tji+VQ2qr/sbyL+puLxwPq7V1QxCmD0PGUq3q/E+6J6HnbU/sVD+nvRji0AjY77/oAgjvK+1hohlykbeKYokV8egP5rrW2I97Sy/s7zb+eaZO3atfLYsWNPJycnd5BluYpSDleHmtoUTwHqY3M/8KgkSQ6SJOmBh4BK4gKvTWzuAQqSJPn7+/uvXrVqlU2wXiJ3x/2M1jmJ9C0vlgpOslE5xgIDSQm3YjK5llqu0Wfj6HkcZ999FGWFkHniDsR3alWwArj4VjDMa+8Nni0pkpyYY/c6nzj8fVMJ1kshOb81h5MnEOi/pM7a9IicTbv7Quj6uIRfsyqypl8GrUM+wMEuiTkH9zHnwF4yC8JxC1lLcPeXMRd6YDHbkZ3WCpDRSCbMZnui0muX2ceOXF5w7MYjDmP5I/Qeut6ynfkhd4CDH9h5kaH3wLcwBb+CxOobs3Hd4i+dIEkOB41VqcfSjE/NS0mRQ1hrmsRfpi9q3e7IazQ7ar9+/aQvv/yyocFgWFWs8a4paipaZwOti+dfBzoBWUA2ij/r23XesyvMzS5aJUlyNhgM62fNmhXYtGkF4ac2KkW1doTkn+eDAy+Rse15EhytGcvr2soqcqlW1suhIivr5SD6tynWNJmOgzvRaaIbrcc1peWd7Wg45lYyjo8jdtU00hO7YzYqbisZsb3Z/89uMmIGXH5HbACg0+RRWFR3Ka6C+k4mN0Ux34X1nsTg7i3QaurObzYyYBrtG7zO4YvPklNYn5TctpgsijO3Rp9D5vnb0OoKCWvzFqEtPiEs4kuio+4jq6B2Zfv66z8nQHOcr/JX8EinH60rjr4L6wcy6fR3ADiYCyppoXbULI9P1YijH2WtlK+8X/v2RGu32LaYY1q0mJ+txhtSTDG1/LaKjyNaJMtai8s+msWh94IyOY3U+3RF1aIA5o5SpmKxCdGvVs2Y0FSzhuOWfjz8s/L593uV6UEG4yNF00/3HV00M/HmAg/+Cv/2s7Yh3s8rcju8VoXr2LFjdZMnT25pMBj+lCTpmlJENS0u8Jksy88Vz+8AmgNPoGQMaC3L8p9V7X/NcZP7tEqSpDUYDMs//vjjhn369LmmTsjrBY1s5uuj91GUGkHaxkq88G1UiVabh3+DWXQa0gF3X2uCSVOBJ/kJbQjsP5ngQRPR6nKJOvo8O5fs5vCSdeQk26yndYmTLpnCwtoPE2icknHv9glO4cspLbk05CS1I2bPK2TFd8HT9QhNG35cJ33VYKRH40cxmR04lfBgyfJlx5aTfPhhnHwP0XRcO0xGZ2JPPcipnZ+RltqJ0IY/Mb5DAC0Da+6D2lq3gHRLMEfNgyjUKopo2s4JcOQdcDDgNjoLz1FpRLk0qKYlG9c6lQlXZ1JpqNnJEXPFFU+nW34DoKFmJ+/aNWWs9mlIP8S/zdfTtUCpPledcL1WeeWVV5wGDRo0yGAwXFNGyRrnab2RaK1vL6/2qtqn1S/pxvVp9fPz+3XChAmj33nnnevGD/la4SvFJY72ge/T2f8dLkzfR7Q+smS9mHNStKaKOSXFilBiNP8JazOlrJuqj5yYO1IsfSj6jYpWW9GfSlwuJugWsxqo2QmyhVF70YIr5ocU50W3CLHfogVG9Y082VjGo+EivCPm4N5gKRptIUnnRxFz6lHaDepN0oWRuHkeQO+YTOLhx+g2ZSIXXEIBGDWPUqiWEhtW3hIeL53OncPXdz3Z2U3IKQpEkmQKC33ItlP+wT4pim9oz1tbEJcwnCNHPwBKR3SLIwWlcq/6riOi22PYOcWhs8shNyucA5vmoD3fmgZ9JuLdaC7ro7/iVMo47mjRBX/XnSxbd4ITHlazl+gvK5aDFX0kxewUsUHgRBpfOHvTvf9mthqU9Bxqd0+1zsC7+1Q0+jyaTX2VeCfFQfWvu820aPwaYSE/42CfTFZaS3b+u55srdXkL+YZPdBamXb0+pz+fs+x6/B0zl58mLtnAsc+ggMvkY0nd7ullQqsOVKmCIDar7JVm8qWHi1Lx93KVBxVEYWUGLUvLu+w2zq/UUgdukzwilDvA2IkvlhkoGyKvprUvVe3CT9jXdZmvzIVrabiCItoqRV9gEWf57LZAqpSKpX1SfTfFcu6iqNR779snRettWle0Mh7Nv3C70d3VxroSgcpP/4daCniTbcI9moGE0ckA/iOIKw36o/NKznMLQD8cW/Nv8+1gslkom/fvhkHDx58MjMz85owTlaajFOSpFqNGcuyXMPEG1cf1af1ZsTb2/vpXr163T5lyhSbYK0lqmAN85xPl6DXSFrxzX8mWGtCXQjWuqIiwQoy9bq/gH+bz8mMHsDZXR+TdH40pkIvHH0OImks+DWYR+rp0URt+gpjnj8XqknBY6M8WqmQbh4f06v/VGRZQqezqkNZlsgpqI9WU4imOH2tzi6TqAsPVtCSjHvwWjxDVuDqt4O8giByM5ph55hIvcjvyYjrxf4lW5A94mjZ7T5CGn9L7PkfubD5c8xFrvRro+TIXXR0Lbc3GsyAHh0JyriHHfGvkWsKqOB41dNH/y1G2Y6o4hcZEUuhB8lrFYtu/Ofit9By6OT7HDr5Ph1DX6Jhs4/pPrgVO3b+Q3p6Byorrror7Rn8s9Np3+xxzl18ANBC0xeZcrIJb+QPo7vxb6LkMXBtjZ7WKRLXjriqTV8utd8uTmcJDf6d01FPoJHciTTMICG7K4ueduLxb0pv++0kmPbjciRkevMLj5LEap6gWc4BNJgZ4/AUT2hH85rlAMk0LHesa+m3rQydTseyZcs82rVr94VOpztpMpl2V7/XFe5TFeuOULPfVP3tK8gseY0iXV9m+rrC0dGxf0RExOuzZs1yv8bcVK4bDM67GdRoLOk7nyFj76PgX/0+NhTs+n6Oa+uvOL3sHzLOjSglznPSW7Fpdiw6uyw0sZGVN2KjWtq6/URfn9c5cnQqJ069hIN9EnqnJGRZg6NjDE5exzCZnXHOltBoC8lI7UhOTvlqWF7e22jeewA5Se3Iiu+Oxi0BQ+g89HZpHFnzDylRI/FtOIdm/e7kwolJBDT4ixT3lyjMbET01k9I8jfTOeQVLmYMYOOu5TSs9zMNw78iwmMOuxNf4lTMRIxm1wq+QcVImOmn/5LFxneIdbq0wNFTBz4k/sJdNO/4GH36diIpqQ+7d82GworNnxcTRtIi/B2C/BcBIwHYrR/KctOjvJR/F/eceIkPA79kvfvwS+pPVWS7lra21iWGJKsl81BLq7W1+5by1tbLwaKxWlu90qzWVpPOam21K7K+nLc4bLW2in2sDmuuitLsbWu1trbdZ7W2nmxstba+/L5ibbWzS6ZXx4E4OV0gIvRrCosM2Dkksvz4YgC+fYJywnVim3Vknihiaf47tHZcTgYBHHXpwfPG0YTpthFrbo4exef53j/KW1uvB1xdXVm1apV3t27dFkmS1EGW5djq97pyVOoeIElS5bXJKkCW5Y110qP/gFZ27eUVvlW7BwTF3VjuAZIkhQcHB2/dvXu3r7+/TWnVlk9eUKZ9gp6mqXkz53/ZzdFm1jefrEpy8YmWVSchFqWRMJS2t511XisUb6p30TovDtmL5S1Vi65YVlMsKiBaVsW2xeF9sbygOPQoptQR08mIrgni91bLdYrticNt0nstcHI7zfY/4+m+unLTrnpHqkkKIBuluWM+uMnJ/Fpo4PCqRaRGDwOsQX2idV0M9BPPDfX/5934T+r3f5Sftylm+8eERAAf/A+ctElMahKMVmPk8JmXMXhtxt3hHLs2LSErvS1a+3S69e2J3i6dDWenk5HXhLwiP5qGv0cb328wW+xYcXIB8TndAOu5JKbTEgN7fLOzeC7Cm1UJ37ArZ2LJcjFNkav9BRpa9qLFiH2RzFH6kY1vSdlWKE5lJMs0Mu/jndQ7OJU/iEVpP5QakVBHR1yzZVq2fIaGDb5ndJdFrDVYfRsz5eNw6DUSE7fxbsNPiXJoxAG3jqWS+KsMEFJcidcvWAOFxCIBoivG8EXll4kjheKIjThvKmOSmnl3+X79V9eYeJzmR6zzlblUVFQuF0rfE8XfUf3NxeOMnG+dF4V4s6PW+aPFqZ21FhNx65RA+c/PxmDf9i88LEksdX6EGH04m8oEtZVw9mfY8ySvFOzhGd1gfKUoonWNcbWksczpYe4ZduPUjd68eTOjRo06kZSU1E6W5atWkaRSe6Msyxtr8/dfdrouuJmyB0iS5GIwGFYtXrzYJlgvA41URCP3heSeu4WaJ96wgUMm2hZLcfE6gkZXSMPOz1/tHt3QmIsH0ExFHpfRigW3oE3IcuWDmGbZrsQB1iLbs27vCjLT29K1fw+CG/yG0ejBlrVbycxoza0tBjO2U0P83LazJeFdph29QGxud0Y1746nY808y4osbuxJf5xuPlPxtztQal199jOFjvxQGMpzxjE8YXyAiYznS0K4n0nUKzxTujFJ4oyuHduzn6ClU5nC86U35NChz4m68BCz9oygX9JK6yr3JuDTDb+iBL4+MY6fjw7Dp8iW/up6pEuGkvB5Q8rbZJuCmO32PD94fESMPrzqHRvcD94deUJ3BzIaTutas93+NmQ0nNO3oPd1p4wqp0ePHrzzzjsNDQbD3KuZUaBGT15Jkpyq+7vSHa1LZG6e7AGSJEkGg+Gfjz/+OLhNmzbV72CjHKqVtZXPD7hqkkjdPbnkDR2uvpX1SlMbK6uKpu936H+TcP1BwvULDxwfsw6fXtj71pXpqA0ACnAhBw9cvGpfI9LD7SChfSbSYlxLvBv/ybpTf1CZz6ejLpWk/NYApGa1wWR2YffmhZw78SytOj7EgKEhNG7+Frs2L2bhvu0ADGnVny5+UwCJf2O+K26n4ooWdtoMmtovpqHdBjy0FwBILwrDXX+RR+u34a1wiQeCe/Asw3mbzuTiyet2G7nLvoC7HfJ4hCxm8A1NWcfyk+HMPN2JiYnvcH/eKzyXM56nch5hgMdrXCjsVs2vInHgwDfMCr6fv/YMp1PaVuuqhuNLZrN17izZ3xEyr0x4h3gPka6zYQexu6J1VbS6gvVMq8haXRWqZVY8zoEBZ2lgUXwDum+xLhfv3arVNdVOiSZNKlQ6V7b4Q88yqbdK0Gih6ywC/fzxII5w0wFCTKcY7X+RdU5jAW4o4TphwgS7QYMGdfPx8blqloeaPvZyqH7k4Lryab3RrKmV4ePj88rQoUM733fffddckuDrCR+HQ/QMfImUja9jzrVZq6tC950HklNmqWU5z6axr6l7JXvYqEvMkp5kqT52TgnVbywgYaZNiyfxdt1H4qEnST11F1H1WlW6fQefzwhwUtysWjV6m9jkISBrOXX4HRIu3oFP4CoaN38T/8DFrD79F79uyaBP5Hi6B7xJZ7+pLI/+Q+mvpXSCzYY+c/FyOkLbEKVupkZSnCIPO4yjhfvMku2SCpsRU9AZi2MiM/mMf3mMfI3V4mDCno08xCYewL7BevplLWBo+u8Umj1I1gTjJqeyIu1TduaULQNbERqeafE9HsZ0Zu0Zwazg+6Hje2DvzfSgZ5kQ+xlBBRdwkAsh4V9wt+W+vprcGTWbX3c+gJ25iL90U1mg+1+V2190UGonRbrO50TOyNodzCkQOk7Dbmlj5prfY3DBh7ycPp6pnn8iSzeQBayY6dOnu7dv3/5/9vb22woLC7dWv0fdUtMyrvdTXrR6AQOBpsA7siz/VOe9u0K0tG8vLwmo2qc19ML179Nqb2/fs2nTpgt27tzpZWdXizB0GyW8WJxecqTHo7TK38KJ3w5hX2i9EeU7WrcV08yIARSiVSRCKH1+rGnFy8V0LNMnWOdFy2pl6XBEf1Yxm4FYqlC0AIvWXTHjgFpEQMwx6JVWcXtihgOjYwHenyk/yqsNv2eXW0/OODYhqkHpt8TrzFBUI57+0jr/xVPW+dfftc6/89qVO/6K4mTtdvZJ9Bvtx6n5K8i6MKhUZopWB63zm3pa5x3zoU3DN2he7zOWHdhASrZy6xNHnSZMs85/PRnCvP7h1vDRLDy5itsjBzJtXzKPfmLNV/XKe+CjO8lQ78cJ1u9l7anf6d1oIs521pMnv9BAZnYLNu5ZRJaDMzpNLg/0tJ5055NvZ/25aYxq1RE3hygAYmlMoeTMHwU/Ei0XFzEQimgkFldN393BukwsTVv/gnVe9BMVyxyLowvi6ElaYBbzinPMveO8kNeHD4cLf8PWu8AxCLrPAd+uVIfos+lfybuF2E9xtEUsi6v6KJf1Da0orVZN/FevhI9rZW1WtlxMESYGYjUtNmCPWGhdJt6//lIMm7TK2clfx3qyQnoaL2KI1K2hWa8k6uedo0/qShLtA1jpOxxZ0ii/U+YJ2DIK8i7C0DPgULucxeNmgRYjH9CcVGM4q4r+x2SngWwumki/Bz6vvoHrkOjoaDp37pwQHx/fWpbl/9QnpqbFBX6TZXlGmb/PZVm+FVgGNKuujWuJm8E9QJIkLy8vr9lLliyxCdZL5EUhH3roIR8kycR/6ct6tQVrjdEVog3fgMOYJ3EZ9wBygQtpr8Yzy/9Rzjg1vaFTAl2LNGj6CWajIzlx1Q17W9FIhTQJ+o4D598oEazVkWf0Q5JkAl2VsVejuXwWvRRTY/5Knkd8Zk8GNx2Gs108sVk9OZF8L2fTbmfDrpX4em2iVYRSoMNkcSY9V1HZcem9ORb7BAUmX86lKoXaX9Vt42m7E7yk31siWP9LjChW4e8dv2aHTglyw9AL/PqBMRN8Ov/nfaqIsrlhbwpkmeY5e3g25hVO0INZ0gd4yTHEOtTjnZNPs2tbGP87+xo/HxrF8Y0+jI/5XvmdzkyDzKPQf3OtBauKGT3fMZOmulX4a04wI/83+th9ydTpB+r0K14rhISE8PPPPxsMBsMCSfpvzcl1cbD5wH110M5/yo0ciCVJkuTn5zf322+/NQQHX1pqGBulcWu4jKyoiqui3NS4x+P2tQOOE0Zh1+cb7NvNJmvaMuRsmwvF1UGmXvh0Yre+h8VY83RSel02droM8o01zDEE5BYpFQE6BU3BZLHHLDtUuF2BxYP1Z6wDcUFum9hx8R2Wn5pPelYbDp+aQnj97/B1VaqiHYh+BYAzifcQl9EXgNTc1lhkDeHyjhr370oQaVZ8c09rO1hfxhz9ofFTYMqFle3BeIXyVFVBWd/QirhRRjcWjrDOi9kSPl0+nQXHOtA5az3TGz0KksReaRitsvcx4eKXPNZ8Jk17JdOl62m2evbh0QufgSyDb3FqgX3PQNZpaoualeE87dku3UVL3SL2mUZjQUe47gZyaC3Drbfeqhk5cmRzb2/vF//L49ZFKEcHoLDara4lbgBhWhWenp6P9e/fv93IkSOvHz/j/5CaDIG5ZwHFWXWSDKB/zQ67NBlP4eFwppE1OOJMI6vVU6xQJQ6p57hAQrGWsy+0WkB1JqubgVGvDGueDbPW+s5ys+Y01ButVtfWB6xtp3tahzqd8qwpe8Q0PqKFVhx2c8mxBlWJ1lfxe/ikWAsQeKUp30PjkE7I60rVoey0tri7rGFwm90c+kex1NU2mOJ6R3UJkADVU+C9V0AdgdYbrUF9AM/XTWXTEpQhbRkJCy711xF3+iHMRtdSVnTRVUAsemFniMdkccLT7QD/COmBRIv9lj+s8/YtARqQVzgX2S2FTfqx5PWTeK3YFcJDd56A7CwKTJ446+MJcBeCwuqN5P6x9UCCD16GaOOLOOXsoF/zO/j7wCGicvphMjnRJugjii50YZ9nUw4VjqS75QmCLtjRoTgllhiUGBdYvs+e6aUDBNXt0z0hw8O6XL1Gt3cpnSJuj2BwbnFYmT6Qs5o8XDmu7wgS3LoSVgwCgofSZtBe9q9sS5eMI+zw7UJFqEGYqrw/3Qio7DppX3wfUj8Wuy+ERFuv3ySD9RpXhevavpW0R/XCtex60Y0hpkw/ayqCZaxVvgAaFBszQyldJcsdyHQr79qgWo1TfKyuFEuHlE7bt6U7fHDkGDkXnbmv1RK2evWBUKi3qz2Lip5guf1ELsQ3J74lQEP+3NuahoXz6b8zhe9W3YGf6za6N3gK94Q2fFe4gOOWAewoYzQ/XMYFA2BEcToynJW+pdlF0EA3B5DIkZUv+tgP8H1N3KYvkQZRpT+fD71yxyrLF1984bp+/frn9Xr9cqPRWPvIz0ugptkDPqrg7wtJklYB7wCzrmw3654b1dIqSVKYh4fH29OmTbNFvdQhlqMD0HacDfr86je+SdB5WZPDuoes4aegpzjkel27gd8AaDi5ZRpeDZbgFlgzK49GU0ibkKlk5kew4/yHtTraPvMoVto9Sp5U+nbzSGB37m7Rmgfb1OfO5p3pGan4uhSZXKHbHCg1oqhhWcwM7LWZNPT+hzxjIAX5gbi6nqJp81cBcNIlo5WKCHFZh1Yq4Gqxy+42nMimg3GFYqUTOOjZCqOkIyQvupK9bVxJ3mjyEasNg5m/ry97ttSnVdYeorTN8bHE0tG4DC9LPFiUt/IzGiVty8wcA8Ob98ZkdmL+oW3sMo9lsv1g2mvnXEIPZEK1OzHiiIQFeykbPTf288Le3p758+d7e3l5LZAkyb76PS6fmroHjK7gT01WORmoOjTvGuNG9WmVJEljMBjmzZo1y8fZ2ValtSJqbGUtRrVoyInh4JoMxZHMZxpZtxHnq7Kyqoh1zsUa3MbrLL9DUVxbLGbF7Gs2OjKl4WdXuUc2AJKj7gDAzjkOj3qr8fTaiSRV7KjsYJfAsF7hhPnO4XDsZCxy1c8ddxLoKf1ML90PBEmH8JNO8UjBZD7M7crYwrdo6LAWCRNaSTFZxmT1YumphWTmhXEx9Vbm7z6opAkqQ6HFnaj0IUQafsPHeT8uropJMjOzpTItasBfZzdQ33UtnQ3vX/Jvc7kctevGZv0opuQM5rfMUNoXrShZJ0satvh2Z+yFv65a/+oacbREtGxCZYnQKmaXEBQnWr/FeySUvveqiJbXBMHrSLT8dt8CRVp7Hmz7FwO6biXGoT5/HhjClKLeRJh2MSr/Y2alBxI/JxwKknlrxK2867iQBKkBBvdt3N6yO0Hu6zmyczqrTC/wiN1dPLZbqE4AtKjABWPhcOhgWsIDhc/R2esTmmlX8lfBt1gkDf8WPs9A+49wJIPHfqjBj3SJlLWslrW8XmmaNm3Kc889F2AwGD74L45XI/cAWZYbVL/V9cX1bE2tDC8vr6dGjRoV1rnztREMcEORX6xGi66rlMRXHI1WUd17p6ch97tO3/ZuMBxcFEtfo97WqlGxF0exe8dcvL22Ur/en8iyBotWxsdzGyaTC3/siCPf6I+EiQ5Fq2hu2oyf5TzuJy7gYUrF1ZyJSeOGB3GY0WPS2+Nmp6iPWFM4iZqGjC16GwLhh9hdfB59lh7Sr7T0+44hESMAiE4dRk5B5Y+Sg/HPMLplRzqHvAzAvj0/cSHqISjO7x6f15nN8VPpE/gczrpEkhw9WVfwHB6aWLo5/IBRdmBv0V2cpxMALYwbuF/7JmfkrkjIfCu/QWEdpBT/wGU2f5sPMqTwO97JuQ0Wh4FrOLsKU+iQtod9nrZ82FcLWdKwy6srD7RcwP0x39M9fR2f6ufhZYnn9ezbCbCcVwKvmr/GTv1wduqHo5MLWZDtwLDmA/lpRzoLjVPRU8CDduNZVNSWOLvQKo/ZzryMQSYltcbioilcsCgKfW3Rs9xmP4UI3XoOmm6/0l/9qvLcc885zpw58z69Xv+70WjcfyWPVaOUVzcazR3by/NCq0551eTE9ZXySpKk+vXr199z7NgxHycnm7CqC8QI3P13ryPwwX6cfyeLWB9rgEuhYJgSU9eIaWncBOuBWlcbSpcTFF+ixFQ9Yiof0YorFigQgxFEv1UxTY6Y2sdPSFDiKIxeiWl+xP6ISc3F1Dr5jtCh82i0ulx2bFnOiAXK8tqmuLFRx8gWSNwAsgkcA9n29jE6tx/LmXNPEt7wK5KyOlFkcqfQXsJocWZ9ylSmDw2nXe4mpsTeT4AxmpN27YnVhSElhZJn8SHf4k7zuFgKCgK4EHU/q/vrCdduokh2YltAO7zkOH7LqUeKFMyjjmcxSXYl6bWC7HfRNugDlphf4wJKxP9v48t3+8FfoZdmGqN1L+IkZXHg5LscPftqqfNYazHRtdFkXB2icHM/gl7Ko9Diipc+ivj8dvg5HOBE5mj0mlxCnDeQYGxBfYdtAIQNSCTF3mq2y3Qr2wPBRxGrDzdY02ipqP7AbfPXc8vpPfhozlAgu7ExuBMH7HuRqfUtlVJMRPQzryg1VVn6rbPOi9efeF2KvqFuZayVV9K3vLJrWrSYimWdKysrvbNTxe2I92AfoQaFmAVFLBYwbLF1XvVz1sgmvkxX0pDNd32cjU4jWdNDOake/FU52id29fCSYvljbT5miwO7Opt407kpx0y3cF//r0vaFMtlqwULhns9SrD5JEfiniAqdTjBF622wI53NeSgaThzi5TUV9OEjDDXG9Xdv48fP07v3r3PJCUlNZVlubY5aGpMjSytkiT9AjjLsnxnBev+AnJlWX64rjt3JbleXQAqojhbwKwZM2bYBGsdId4st3cBo0tTZLMWx7C1kDniqvXrWsPBMZ6M9HbVb2jjv0PSgL81Gicmrhka6U4iwpTwsB2nv0SSTBx1aYNWKqKf74vcd/wvXCzZrHG7g8k+W0jWKUqno/DSpDv+f/bOMjyqow3D96zF3UMSEtzd3YqXAqVepO5ODeoOLRVq1Cn0K1BKizuUIsXdPUCCxN1W5vuxCXs2RDa+gb2vK1dm98yZ8+7u2bNzZp55XuvDnDSajYmlgEQRxlrtBDrpF6NGjwGLzV5sbif+M1pPtRbHv6ZH2Jl3O4O3xxJVZzatG03iXE5PTFJHQkZb9Hm+bDllzqR1MTKTHp7TcFalsD/uCVL09Wjj/SON3RcDJjL0ddCbnJkRu51H63SmTepu1gYOKeu7WSJ7XPqize579fE+x+XXvpCSt1LGEKk/wlNBGzjuVNQ4lODDvM28KzrQvsEr7DjxOSY0rMmbyO1Oz+JpeJc0jffV9npmL6RV7mY6Bu3BTRWPTpVOWmpLzibeek3LK/ImMc75IVbpXyZNBvPI97W746qkcILnpk2b8thjj4V+/fXXrwNvVNVxbXUPuAl4vphtC4BaJWaTXF/yAFdX19E9e/Zs1rt379IrOygXxoxgsk4Nxr31b7BxZE2HYweYaNT0A3z9/uPYkSq7PjmoBHy8zKksDx97g6io77mlg3lYa6jJCaPUkWvy4NPgTzjg2oWTTi3xSivfxfEf7b0M0M/EmUxyKb+mPgsfUjN8aF5/KgAtsGhY/9h5hJSspgDopRv/pJrPPdf8cZ08kwehrltx1ZgtBvw4xqIE8yruZK1iONLBDYG/KZbuuYuYGLismA6rmUQiORj9Ms0iprPjxGe4iwT8xRl0IhsPQ+rVTmuP7EW8m3grR3RduJLXjiyTPyG6vSSlDLimTSH0dDl5AVpCrqz9a0wkpeuYJ02a5Dp79uzHhBA/SSnPlVK9XNiaESsHGCalXFfEtv7AMimLMemzQ5q7dJDzGpQsD2h5qHbIA4QQbsHBwSf2798fGhhou8eiA9v4THGrNrzeGOpptpDx15fkHhhN4BXLcP35CEs95cIs5VTgvjaWsspkKTdVjGAppxSVllbKKdIuCqtKZZvK6bYcxbdRucCruExWSvujSyGWcuEZCaHKo0Gb1/Fp8SuexPEDP7OJCfx2T/526+oOCUAFUC78UH7mP9gwpzWg4EotJd/EDEAlDHyZuoG4sCzcSAGgffpmPEhgm+luvrrPMhf+kCK34eIRlnJx09EAYRcNfHrmTjqnr6dzu3hMwqxZOdmA8pNyCGIXw5GPQW+Oud3g3ezxLTqpwAufQleXbxnj9fjV5349cBz/w/UZcrsLB3b8wKDXLbqE4qbmlQtZlEk9lIuGlDZiyu8ywKYeVBlKC6qCbFhgfZ0BazmQ8jv/ayFZRlm+n4UXSRUlr1CitLk63thSVi7oqhNrKSslAkr5k1IWkGBJuGaVWAVg7h3Xxtnj+Gn+PNWKVLUvb7edxIx8/1awvPYRS8z/6xoP8mVWKzbnPEoz7TKEWs8W9e38ov2M0IsqglTHeNRjKLF5HZif8hMdXX6muXolOlUGB1LvY7nb/bTW/M0I58noVOm4kooKAwvlmyyTLzNrbMnv1/XC+vXrufvuuzdevny5SkbRbB1pPQf0Aq7ptOY/H1PE8/aLuH7kAUFBQVNfe+01P0eHteo5mnQPkS4n8ZpwG8aEevDZHxB9g0yNCyOh9X6jTqPvcfc6wp9MYiejiaN+TUfmoBi0MpdxGW/RSLeeT1J2AoJc4XZ1FHSn6Rq1V7mJyjnOoJQFTK0z9WqHtcJ4tzD/NZ9k80r1bdmPkC19CEtJ4mjCOPQmd5oEr0Kl1pOa2LH0BhxcV8Q41Wdo47OMS5jGl7ueQiL4rmHRpqnn1C1Zm/0iTbSrOa6/ia/dPlVYuUle8OqEi0jnnOzBpKBwXEQqQoCUgiDnfezN6szdLg9z0tibQ6IPObhzWA4guVgj3uuTfv360blz55aurq43Z2VlLans9m3ttM4E3hRCxAG/SikzhBDumDNhvQS8XdmBVTXXgzxACFGvcePGtz/66KPV4o92o9Pl61EkMwptvU34PNULXu8FT17kfIBlhVRFRlntFxNt+96Cb+haki71Z/vybSwb2bj03RzUGH1y5vJA+qt4yiT+l/4LFwxVO2l0xrkJp52b8FLsS1xxCmGx3z01kr5XomJfzp0kKb57oRFzSbjcn4y0ZtUej4PqJ9XTMtoaHQlEB/J58BTSVV58tuc5tvp35YBP66uazMU3W0ZbpwdOJTLaLEvxzYSsMHCRaYwIeAEXo3mVa3vX2eSYPNHjgo5shDBPnL/u0YJkUxizs2aSi7uVzeGNxowZM3zatm37lRBilZQyr/Q9bMfW8cYpwG/Al0CqECINSAW+An7N315rKNC01vbkAsHBwT98++23/mq1I/FVdaI/0xOeiAW9C/T9oabDqVLcvQ/RYVA//ELXsHPFZvauW0ZWmqPDatec/olJqXezw2koE/yOsyN3QpUf0iTUDGt+lHn+DzPtzFhWHGzOB2cegN3PQsxiMNmwmDj5ABx4E/a/BufmQU586fuUgsBIYJ1lxF8aWOG2HNRufgl4mQ2BfVj5z2DqpZ8ufYd8wuURbjL+yJ7c23gz5SzH9APQikx0wmy9YpQallz8hWUXv+enrHnkcgP3VvMJCQnhoYce8vP19X22stsuk+WVEKIx0BfwAxKB9VLKE5UdVFXTzK2D/K1JyZrW9nvsW9Oq0Wh69unTZ+HatWsdqwuqCOW9yycTLeW78/O/+U9sQdzpu7i0w5y1R6lrVeYCV+qwtIrfblHoq6fUfSlta9wyLeUOu4qurzxGQUpYsNYhKnWuSg2rMm6Lbk8S0exzWrR8kaSkLuzf9zX9f25tjts67DLrVl9/z1KeOcF6242W+rUkvnzaUlZqK58rZtnryEXgIRP5OSuUZXmvs8zwGmB9bih1mScbWsrKdK3Kz6Ck+3fl566s1zZpD3edm0O7pD30N2RB0k5w8ue1Rk/yfvPJIMS158zZ/8H2+znmHkWW2pXmqYdxcvKDjjMgdCioLG+AUtepTM4BFqP1t98y//fRnuLpqIbs+nM/mUmteHq6df39rYp+nUo9+d42Rb9+pfZVaZivtMEraN9WlHEUNvMv6ruhfC+U2tW6iiUwyu/6jk7W+6cpdKkVSf+pjFt57fNJtpSVaXeVmug+GyxlpVWg0t5LeT1UnsPK8qlC+mmlLnbocvN/rcjk/qCbcNdcZM65NSTnNWTS+4VfjTX918OYzE95LP0FDqj6slD7Im/kDmWbXycSnAK4ufeSos/pG5ysrCwaN24cFxMT01RKmVT6HrZhqzwAACnlceB4ZR28Jqkto6lFkW9x9f23337r6LDWJCYVBT/d/i1+xCk4iYuxt5KZWft1no1bvUb9plM4eHAap089Tdny3zioKdoaVwGStYZnayyGvb7t2Ju/WEoCZF+CUz/y3oHX2erflfXB/a13yEuFnY9Co6do2vZjEALf3EQSNwyDjbeA0IBfJ2j6Iqi0BOe24bJTHasmgnNjCM6LgewocLGYqgY5mdOhZ6fVw4EDvXRj3rnl3B5xM+OjuvG/6HVA6XcWf7o9z1FtZ6Yl9eWAyXz+jus6m5Oejao44tqLq6sr7733nu/LL788BXiostq1SR4ghOgphLhF8dhPCPG7EGKfEGKaEKKWJaCs3fIAZ2fnW2666abghg0bll7ZQZVhyvFG7ZyEzuM8kTc9RMuWLzNwUCPCwn8vc1vH7WjGPTB0GQ2afcjOnf/j9KlncHRYaw8D9D+yXT3KvqYoXUKg5essCR3Ob//dy7c7HoVLq8GUP0xqzAZDBoQMuqqDTXLyg0Hb4OZT0P13yIqBTaPg3+Hs3B7Gwr1deSDmcxpkHeHDUw+xdXc4fx/sCn8Hw++CLt6fEea8lf7+k8hKaYzJYEfvh4MKoRylVZaVI6slkWvyZs651STlNaRnwDs2H/ewrjuxogndjfMBcDbmlLKHg7Fjx2rc3d1HCiFCK6tNWzWtUwHFYD3Tgf7ANmACtWwhVm3WtAohVF5eXp988MEH3jUdy42OMb4hzj7H0Xma06SsWH6O3Fx/ggJX13BkhZFodMmoVGYNllabjEqdVWztyIZfcTlmJLExlbe63EH1ECzPcELdufSKNcCDnX/k24aP0SL1EPwzCP4OhYPvQm4iaNwg9ci1O3nUh4jbYMQZuFMPd+RyV8s1HHVrxdPn32PNvub0TV7GE43+oFOHi9DIrKno4/cmD0R0w0WVyImN17fu3EHZMaEGJPU8VpRpv6+cfkIrc1ijeYBD3i1K3+EGR6VSMWXKFN/g4OBKW/dkq09rEnC3lHKlEMIVSADul1LOFUI8AEySUtaaOdGm7h3kzBYla1q7bLdPTaurq+sd99xzz3c//PCDV+m1HVQGSt1Y9y2W8kuHP6ZhxAyORT9DswYf8v2BS9zeuAep8V3Ze+xjwNrzNFYxo6n0VB22zPp4yvSR7XdbykrdXKbCq/pQMddOj3TwaTifugMeRuOcgpQCo94NjS4DfY4Pxzf/QF5iY3wjFxN/8m5cz0cC0OCRRiTve5jgnyYW3bCCsno3OrCNwausH68cZCkX6DUB3lSU75sJL2r6c0k25cPQr64+r0zVGx9gKad4W8oljfRXiVYv8wJEz4ajn0BeMvh2gP7/gLboEdHwovSdxjxGHdvJIfd25KjNQu4OOyWuMgUDTjSIySRPuqHH1eq7M/k9ys3PD4BalU0d31WE9JrMXp+2ZGjcWZL3Nslqiyzhv67lP0Zx2JoeuYBeGy1lpUZXqQ/dqohzXSHVRlHHKkyTQmLBY41Ljkmp021yzFJWpsDe0MdSVvq4Fk6l2/cfS1l5zVSOvioHoFoeVLQVoueH7HAEkm79dxHrYhHcFnUNU17nem6UVs4YS4ddW78kmhe6Nzt8nZtaSClp2rRpwvHjxztURsIBWzWtOqBgLLx7/n4FP7UngJCidrJn7Hk0tTjytawfvPPOO44Oqx2Qkt4CD9czqFW5OGsS8dCdIzW3Ht4eB0vfuVKQ6Fr/Sct+s/EM+g9p0pB6uRda53ii976JMb03XvWWonFO4cCiDai0mWidEsnKCSew3lxaDBhztaXARrM4+91BMGmRRidUmuwSjuvAHnEngQBxhjhZEUf/asItHJpPgoaPQ9xGszRAXUbnPrWOXV7drZ8Tglv0n3G74V1ekDkYcSJQfZwI11jOZfUrup0y4u+5iwGtR0EqCCkJzb5IXacs3g2YVSntO6h6jELLe87LeCH3Lv7Z3JHGAy4ihY0Tz4Ws3IYvK3vH9UZCCMGUKVP8HnvssfeBeyvanq3ygGPA4PzyPcBWKWV6/uNQoNJWhlUXtVEeoNVqB/br1883JKTW3SNcl8Ql9yA5rSXN6k0lyxBEn/BnuJDejyC/9VR5LihtNu53PYDn+DswmXSc3fUesYefBmFCmnS0GjSEFhMa4d9sFplX2pJ6qTfJ54cSd3IsKZf6cHLrdE7vmMKhpSvZMesCTu4X8G37PQD6tAi03meqNn4HlUvaSZ7XDMGIlj+NH9R0NLaj84awEWXvsJZAijAPyQ1yfReASb5NuDeyhGHEMnIlpTtSCp7o8BXNhx/hzu5zGZIxmzbZG0vf2YHdcEbVno+d/iAo9woR2bYPAG7qWYVBXafcfPPNwtnZeZAQwr/02iVjqzxgBDAfSAO8gFuklCvyt/0C+Espb65oMNVFE/cO8qc2JcsDemyxP3lAaGjonnXr1rVt2rSpld1KdKR1PYf1RtXQQyENaJRv9OZMOlNoht7khq/Lcfade5U2dT9k0a7tHNNZ/GWUtkM9N1m3q0yV2UwxdRR60VIusLNRqbPR9P2alnU+Ry1yuXnwHNYFW/JeSwCTEc78bF617VqHxgE9OOFZ9PxvQdrYRn3H4yHiuTx7OV49puLa+1OWrLpIwX3t7fPM9RxpWquHmfdZykrbIICDLS3l1981W0ytXT+A804NeLzJPC64RFkltthddNbTYgkqlBK0uHSnyinT6paFKI+ttG3yTAONSU/icnOO4gdJ5kfMc8fi7qLP1rKewwPWwcTU+2hs2EXUbftBqGDjaE6kHqLd4D1kat2LbbOi358hKy1lpcRI2ZFSWk4p07kOVEjtlfZTSquobv9ZyspUtamF5vaUNlrKFNNKyyqlxZ4yRevwpZZynOLcWmu5jNFfkXszRmH1ZSxkSa7cf9oLlvLCkZayUkqltI4zqsHHGMey80E8HPIf3/ctWdOhTEtbwI5KSLJWpPTlOuT77783TJ48+dP4+PiXK9KOTSOtUsrFQFPgUaBFQYc1n61AKU5nVYsQ4hshCrtelrRD7RtpFUK0bdiwYUTTpk1rOhQH+WjIoY1qEUKYiE4dan5SCi4kDqZ3s7E09Py7Uo+ndY6j9c29aRfxHievjGP+7kNWHdarqNTQ4CFo+QbUf6DYDqsFiUfgdvRJ5l8cQ3IUOl0SQphK2c9BTdLOewYnFzdgx6pObAroya2tN3HBJar0Ha9zDCotbzQxr/so6LAC9L28vtKOMcdtEhGGI3DhL/MTnWbgqU/jl233EZXhmKWoFUjJJ5fN8/p6oavhYK5/xo0bp9FqtROEEC6l1y4eW+UBSCnPSCkXFE4mIKX8Xkq5rSJBVAQhRE/ArdSKhahtndbQ0NBJr7/+uh9Ym1o7qDlaqFbxsHYsRqlj58XJnEm+mWDvf9l07Ed06jT6hz5Xqcdr1OshNE7J/Ll7HzuiPyBbH1T6TjYgVHm4eJ8g+4y5A2zKc0MlDKhUlZp9z0El0tTjD4YEP85f4aMZ3fMvxvT8kzyVI5tzAdPrTyQn/2chDyeWhA7n9//uJiAnrpQ9bSNW05DVzhNg63iIngPOgdzVfQ494jdzZnF9+G8cGArpwg3ZlXZ8BxUnQn+Cpnm7mBi0lONO7UutXxmjqjcyzs7OTJgwwc3V1fX2irRjc6dVmOkhhLhfCPF4ob/HytBOAyHEd0KI/UIIoxBiQzH1mgkh1gkhsoQQF4UQ7wgh1IXqOAEfAaUvc1YgMfvCl/RnTwghPDQaTe9+/SpnIYGDyuGgaQgxpuZ46C7QOfRt9l5+jmDvLfi67+e/k1/irrlIsEvJMhRbUetS8Ku7hDPbppGRG1kpbRYgTU6kx3XEpb55/lAf3wwhJB7ux2jW6F36dO8FCwIgYXulHtdB+dCIbAYEvcjulEd5ue1UloSNwKCqdVbZVYoUKj5lIQDv8i93dZ9DusaDX7bdB2XIAlkSX3h+C/UmwPYH4dQPbAjqS9jIGIb1XgqXVsKa7nB+AWScgW0PwAJfLv8VzORDFbAvcFBpdM9eSoI6mK0uQ2o6lBuGRx991M3Ly+vFirRhq6Y1CFiPWSIgsUhzru4spVQXsWtRbd0CfIXZ47UFcEVK2adQHR/gMHAEmALUB6YBn0kpX1PUex84LaX8WQghpbRtjLSxRwf5XYeSOxN9N9iPptXDw+OJV1555ePJkyeXOKyufPGNi7EiuR6pSZ3lC98mM8F1LC21y9gf/zBO6lQ8naKZfWYLYyKHU99jJT+f3Mdxl9aWeBUB1lPMJAZdsZSV6QlVJvAM/ZeWI/vQpFcCyTq/q9uK0xvagvJ9i31wGoFdPuLI1xfR+Z2gyf0tiFn/KWH9nrfaZ5C/JfhVjnTu1U/GGdg4GrLOw/Bj4FyBE0BBSfrUtvssZWVK05YK7WRxtmvVrXnuqLisG9SSX6O7Ea8J5e7OC2iVtpvlO7vwYqOfWBA07mq94jSESm1vXDFv8z1z9Nwq32IUH/CI52HUGIlWt+Rcu/N8evAx+sWvRisNpObUIyGzNfX9/iZT7UbrnrGka7ysvr/K72Nx75vyc3JWeNsrraQCCw3mKq8rypTNKoX6R2mLtq+NpazUlirTQyt11oWFeUrdqFJrq9SWKlO3KtMJR0ZbyrsVg59RZy3lRMvlD7DWzvbYbCkr9bVKG6wCG8FnnAYReCKEM2tnXt3WuYg54zfetX78Xzfrx2srb41fualNaw169uyZsHnz5t5SyiKMmUvH1jHFaUAKEI75/ekMRAKvAyeBsuQyWyKlDJdS3oa5Y1oUjwIuwGgp5Rop5QzMCQyeF0J4AgghWuXH8UsZjm2mlmlaPTw8nnnwwQfL3WF1UHVk48O3WUv4MnMVzf1m4uN8EjfNFSRqDiZPACDTUPFpfI0uFQApqubkTDl6J2qXRPzafot7xAYMOd4kHx7Lois/MjN2DQAxOZ1KacVBlbP7WUDC4N2V1mG9bhGCbwPepn/6X3RP+ocDnu2ZVecRXox+jeDc2NL3twGj0LJBPADAd2nN+SatFa3164hxieD2TsuoNzCBhYfXsuToMur7mTXuQko+O/IA42O+hYQdYNLbdjApK22U+EZHSzYN1RtJPe+4865uXnzxRf/g4ODnS69ZNLb6tPYGngHy1zAjpJTngQ+EECrgG2BQcTsrkVLasrpjCLBKSqm0Lp+LedS1N7AEs19sM+CsyP8hF0JEAx2llPGUgr1JAIpDCNGga9eu3kFBlaNfdFAVCI4aBpJj8CM9L4wg7z14aC+Qoa+DlILhYeP4OW0BedKj9KaKwb/BXLKSmpKurppl2oaMOiTsfprgnpMx6T1IOXYnxhx/jmcNp4Pnd/wau4orea3hOl3ZWisw5kHsEugxH9wdC65sYZv7QFZ53s6Hx5+gb+cDfFLvLXomreeDk49yf4sllXKMeOoSTwQBnAego3455oSRkKb14kpmR0Y37w2AlIJXm3zFPbE/8uKZt+BYHKhdwLsl33m35rhnY3zzkszJF4zZIA1gyITMc5B1no1uTRndeSUJTo4blorQSTMHgJRzgxGqPOoNuJ/0S92Ax2s2sBuAwYMHI6UcJoRQ2dgftMLWTqs3EC+lNAkh0gDlN+Y/oEIWBkXQBLMc4SpSyvNCiKz8bUuklN8C3xZsz5cHRNrSeEEa19qAn5/f+EceecS3tHpW99/FSAFsyV7UsFD+5pO1wKe8ssYeyjPF8k2BmjvzAiy6xOHkWwgz/kvXzFVERz/IP9G76NF9IOMvTyf6wGQre5gTjSyZXIIvWzIUqUzWNj7RXY7T3XsO36Yv42Jw6V9ZWzLnPPgjPKh4fKgFnEyeRPf0g8QHGfmk+xuk9jAwO6M5HiTyHuvIOhd0dWrNoIGX9lv2n1ohlZKDkiiYnu+evo6vgHaaVpzO/y5XltVUSe0oJQHKDEiZ3pZy738t5Q29Kyem8rBTIegqeN++CJzKgtPNeOPw23wZ8i4/+7/KR+fHkRqURrrW00oGoJyuV5aLkwrMvRMkakhZBsvNXmSnw82TYmP+BIGRbu1vRy0SmJb5Ly+49abxXi9+MG4BJDFtztEmawuNc/bR4soBHr68BpwCwDUMNO6g0oBLKAT3B5cwWh9+j/Xr+jHRbRs5wp3LwZZYIs5bysqsV0orqY4K2yalfZTS9sozDfwSzeUz9aylAMpZPOW0vPK6psz8p0RjsJQ39wD/BMvjAklDuge45meYbrPPYndV0P7WLub/rQ9Y9lVKB5R2Xy0OwWlFns7wC+b/AiOjoz7nyrlxJLr40j3qDdwa/IF/k/8xcW4vYoRZ63LVait/KcnmQnksqpPSfptq0/i7Tqejb9++urlz53YHNpW6QyFs7bSexZL16jDmBAMFbms3U/nJBXwwyxEKk5y/rcwIIR4GHgYIdI6oNZ1WrVZ778iRI23SCzuoQZz8OZoxkmEBj6FR5dGu/UNcvjyUlJR2RB98hQbtJpMa34X0jLILoDo5zSLO2IAj+qpdMJCbF8j67euYe6f5sZPMzM/RDZHs4wiOhYA1RbPsnXwSM5olQSM57V4WNZaDS7q6vB8yg/cujmOvWzf+8RpBnFMAq9YP4rFO33KJNhU/iHcL6L2Ei9se4cVT79M+ZQdBWtCKbOqK3XycuZVYU2s25T3MvbpHycn14ISpDxd1kVzURbKcewDY36qU4wT3x+/vJozM+5S5utcpPmGqg6JQi1yGRI7Fxf00+/6dj0qVg2vvT8n673Hcen1R0+HdMDzwwAO+GzdufIxydFptnSRfBhSIP94DbhVCxAghzgJPA1+W9cA2UNTNgyjmeUpbhJVvzdVBStnBSxdQKzStQoiGDRs2dPPycmRttXs0Lsy79Bc7Up+8+lSzZm8AcP7QC1w6fS+t+4/ExeVCmZtuoNnIUf1gqvsHKle4sYhJAKQRUEptB1WFRuYxNeZ2trkNZFyHP2s6nFrJMu+xZKrcuS3xezLUXgzst5psjQsb1/QiKutk5RykznDGt59PjHMYF53rcFk2Il7W5xv9AmJN5oWYC3KmccLYh+edB/KFizcfXLgHN2NaKQ0rcAlmvtMk7sl9ky8zW9Ewd3/p+zgAwEmdwsj6N1PXYw271qwlK60xvsEbENos8k6bpwdSCS6lFQeVQZ8+fTCZTP3y5aVlwqaRVinlq4ryCiFEN2AU5sVSawolG6gMkjFLEgrjRdEjsGWmNmhavby8br3nnntKlQY4sBcEaxI+JtRpN5Gu/xIcsuTq88f+m4FX4FZatJrIzu3zbG9RGAjX7GZz7iOVHm091TY6qX8nRHWUiL6nMRjcMBhdkbnDWa57nHThxwbuJ5lQ9nAzxcz6OahibkqbT4DhIuOjtmISjkmX8nLEpR0m1AhpYr9PGwb1XcWulR148cxbPN7if5VyjB2+3Wg+wHxjOkYhtSqwrs/Fne/y/uAv/SkaqjYxLHMyb8fez8Tw+dfktC+Ov5xeYqdmOA/mPMfP57swJfBblnpNqJT4y4svF/ASl4iT9QG/UutXJzoyCNUc5O7G49GIXOad2EhwQn5aOWECBGqf80i9M+lO9hX79YpGo6Fz587qRYsWtQPK5AtpqzzACinlrrIeqIwcw6xdvYoQIhxzEoFjFW28tmha3dzc7ho+fHil/UqVpn/zUqiVf7kPXF2j+SsrHPcM6xAGrqqsiOyLiuiCBMCbACpafXUnES6bWJDxJR9ctUvRMmX2FwxvOZCt8a+SmNnGKhVi8GVLOcPdUk5vvxWdyCb1Sg8CFYuMS9I4KdMZOueYV0kCtCro90rJY3I87ZxnWyq6wl6GkpbRhBHZXzE46xeO05MEGclSw+to0aBXWIF+/7ClPGIxjP3NXJ59r20xOrCdD9y2gVdj1nao+VEgt0xL2cpGz44W6F3Vn4YWsoTzfwE2386h5LvAMBM0LtDqHVpuHMU81btc0tSzXq2hwFZrOeU11muMpazUqPfcBMdpwGYacCC1MVPT+vDNyVt5130BtCr9h2nJcIBmYFrOz8vf480r95FhDCI31iIfUupKO+2waEIz3K21qAXXneaHrW2zlCli97a1lJXXLICd+Yb707MHES6Pkqby4X7dbjY1tSwU7LrVep+Ft+QfM8vyXMuDlvKlEEu50QnIVeTM6Jmvi/UEAhTLrQtstzb0gVc+ApUujcj+D4P3Tvy0Zl/BDYG9ua3HfBKczbNGf42GmNT+tND74DzofbLTo3jiJ/P733MjdoWt187adM296667/P777787KGNf0qbxRiFEtBBiihCibem1K4UVwCAhhHK59R1ANvBv0buUDXuXBwghPN3c3ELq1KmZ8a2AgPUMHhJFcPAKVOos7Pv0ty+2Zz7K5Jg8DmZbJ/6ISRlAanYD6vravmrZUxOD3uRMqr5upcSmMeXx16nmtHMzd1iTDJEc4CYA2rKcJs7LWZcxmXhDIzzFFQZpPuFR3W1oyK2U4zsoI5fXw+mfIPLe0us6KJmwEdB/PVz5B7bdZ34usDcqJIGGmJL3rSKOarux2ul+2uetREUZF1Kr1BzVmW3o/I2VY+FlK06qFOq4bOXz7JbMzAogXB5lnettxGrq83LiQ1V+fCFNRJr24ywzrnneK2opjUcPwK/xPDw1scyNn8O02BP067/+aoe1AJPJib27f0TnEk/q5Z44qD4GDRokNBrNyLLuZ+tI65+YO40ThRCnMdtP/SGlPFTybtcihHAF8hO1UwfwFEIU3JMul1JmATMwa2X/EkJMAeoBbwGfFrLBKh/C/uUBKpWq74gRIyqUo7cipKa2JjZ2FCp1NgPudSMtqTUndn1C0qUict07uAZJUQPkgrj0DoT7rGbPhddtaudSTnu0qhwiXDZyPtuGZdlSEu6+gXrei6njvgWNzEOtziYlqwnfyYVosCzhXZ4ylW0Zj3Iq3INgeYIwDtMzbxE3e76AWhhIlqFMy1vL07rhPKcbyL+61zmV17eY1+agSjg1A/y7QpNy2xo6UBLQDTp9B5vHQM500PmRJdwJNZxhP72qPRwXmU5r/T+scZpQLunHUV0nTmlbcU/6FH5QDSTZFIGLSOFmw08cUA3gnKp16Y2UAY3IYkK9LgQ65w+NSogTdbmCO794v4GnKZlvLveiXuYJzrhVzYLBAEMM7yeMomneLgxoOCPasUTzPP2MvxBp2of3iDhSTt/CwVkz+bNPJHrpag61mMGoSxdHcnzdLNKudCu6goMqwdvbG39/fy8hhL+UMqH0PczYqmmdiLnD2hVz5/V+YLIQ4igwD5grpbRVzR4IzC/0XMHjKCBaSpkshOiPOXPWEsw61s8wd1wrBXsYTS2JkJCQO4YPH+5ees2qIS/Pj+3b/kKtziIjpQku7mfoMPAmsjNCwXQeVI6OS3lQCSNate33XUn6RqToIwhyPlB6p1VK2DCM2xqv4HJmR2LSe2HK86SuzzKi/BbjLLPJUbkyuuERhhRSoV8WjbhMIy6mjmJJ2ic0dV7OXd7jaaVaxuy8GdyqfZWH/c0jsl/FbwEcF/hqIScetB7g0LJWHkF9QZrgygaoezs7nAdyR/qnrHG7G4v6tHp4MPNFnGUGf7q8VK7909R+PBPwD5/ED+I5z24c1Q+mtW4BroYUNqvu4DPd3EqNV6LGT3eMzfGvsSfpMba3cSVLeAMQpwOVNJKkCuTeiz/wTsOPK/XYAI3y9jA1bhiJ6mAmOu0mwnSQp/UTGGX4CB95iQWayXT6YQi5qWYPL72NE4RxJ8dWeqwOSmfkyJFuR44cGYB5INQmbErjes1OZjf/Hpg7sLcDvlLKculja4IG3h3kp71LllHcsrhm07iGhITEREdH13Fyciq9ciVQUh9+wa3g5BRHz1698fQ8xu61S0m4OAyAQSurJbzrgtXPbmBgp77sOf4hl3e9cvV5pX+hUtsanz+T1W5IHwx6D2YlLKbgk3rhE0u9e/PXkESwnw9EG1bsXcPF5AFo9eDucpahXTpxObEfkS8UvQDs+c8s5QvhlvJt+ve4XZpHhL+IOUwrtzn08PoErSqHP3Uv86vzRwA0VNyu6vIs5Y8U7s22eAQ7sFDwfg2IW8HcHbfwsd93LHe/jyuKHCOFU4tW5D0t6fuv/IVQpm49WEzq1pLarSqRkS0pUK+SeQEWRUC/tWb/08zzsKwFhA4hsMOXxCsyjVVZvFKybMMwhl5aAR2/gYaPlb5TMXilgac+lVdPvEnr5H2s8x+KRPDKsQ/4eVsSIDinUBdt62IpK/1V2+yzbjfB31IuuEY1Nm3hA30v6LkQwm62ql/g4TsicTYfRY9H1WM+RNxKeCHlRYHXMxStSwVrXb9TvjJJRxbvaZpzWTbhW/18cnEny0XykWxDXQ5wwLkzE6L+QwqVVSpaJY9/Y/346/xcAkGFUt9WJD329UpVfJe3b9/OmDFjFl24cGGkrfuUd5LcDYgA6mJe0V+7BG/58oCS/mo0PCHq1qtXT1ddHVZbyM0N5PChDwFoP2A4QREO652yYjKZR3EuJZYtdeDp3R/gH76MCI/1JdZrwr/k6n24mGzxgm1V/21y8vzZfOjXMse7kqeulp8Ja04Xzy8x5o9EhRsPMy/NgyVpgvcDvPk4UMtkv3oM9noFb/W5Mh/LQdGsDRzCdpfBdMq+Tlc/1gSuYaD1gsxo82O3COgxDxJ3sHr9QLzyUqo8hAbppxh6aQXvN58E9e6vcHtpWi9ebf45ozts4OvIl9jl3RUnTQrOmsRKiBbcZDL365/m3bzeEDYK6gwvtu5iv7H8HDQR/rsb/huHmyG9UmIYovoYV5HKj/pZ5GLu1d7EtwRgXmjVKmc79yd8WCnHclA9dOjQAYPB0FkI2/OT29w9E0K4CCFuF0IsAOKAnzB3tu8Hal2OUXteiOXi4jJo1KhRdmfO6uVlSUPiF7q6BiOpncSndCUhpSOdmj2Os+v50nfIJzWuG+mJbajnVfwCrjAOMZRpnL5yN8p74kDvLSSmdsJkci523+LIwZ1fxef8IL7jtyuLWJ70OUsTv2Si61ZmOk/BFfMiiD05d/Fb6v/YnXMPfTyn8EpoJMO9n3XkSa8kdDKHTJXdXQ5qL0JAQE+4qJgmCh0CN23GJy+ZD/ZPqvIQvPUpACwMGwnqyh+cuOxkXsDr5lTxBVoamcvbeX3pYlzAl9pfzWmES+ljTKvzETR+BqJn0y59W4VjAGimWsMW43gy8j2j/UQ0E+RTrOYpnhPHSVQH4m+4XEorDuwJtVpN06ZN1UBDW/exaUpfCDEPGAY4YU6v+gTwt5QypRxx2gU13TEtCT8/v9sGDhxYreIqZfei8Ftz6wLz/wXfe9EMWJ/1Aqv9XuOjG0gaUNL0kTK15bFiUugCjJ0lIHUWFxfdTrdbWvBN2hrOGTrjlWqp03avpeyuWBh7MPk+utR/AV9xgR1Jz/Dty00IcduGv/tePvJYTajrNmIye7Iq802ygkFgoIfPFDzdTrE27hPGlTDQ+ulzRTwpJb99vBZXtR/xec35u1EbEAKVNPLyuecxmFw5qruTpj5zibl0K3EZfclwa0+acxvGhI2hh8cX7P/AjWMxjxHuv4xNcV6kJXQkO70+h1qYBepgba3z9HWakGawYpB05SDb9lFO9f/s3oYgfSypXsWnVRaUcYq8ELbWV0oCmh+xlA83s46lvHEAxaZVLYnirl/FHj/iVtj5BGRfApd8jyXXOtRtOpHHD7zB420/AY1r1byW2KXs3HIXADuNOeVo1RorWUhB2RROjt6HOm6bSU1tbZWm1T8B6p2xPD6S/9ldCQJfRW5LVb6Zwdi81/BRR9O99wFiXCJ4M71oKYr1tU9FyJUP+fPSDl47+wIjvHaQqzLfOMcrFvDXP20p7yokxmu3x1I+3BzSUtyIkFtYfFMueWonAnJdmLrGxIXMXrQQe/BzjePOPpO4s6Tly48X/fSVQBi34QCNc/dwzKk9445IZvUpLT3ZjUVVDUGMGjXKe/v27YOAE7bUt1WHGgRMBP4syyove0XasXuAEEIEBwe3bNHCBsFYNfNvztPsyr2HTOlfemUHRePVhE9SdvGA5yge9hzG9pz7uKTvzcmsISWuyj9y8XHyjJ40CprFrQ1vQiXMIrPk3Iacz+jHtiuTOZM+GL3WfGIHOR+gV8hrAJxOK34qr1hiF3Nv2MirD4fkNecF3X5C5XE6BEy3qnpTnSeQqPBztrZQ9nA5Q7cmjxIesAyagtHgzMZ5lzErihzYSp7Kmci846VXdGA7YaPgyFRY3to8chiUv8gx8h44+BYcfh9av1+5x5QSkvfC7mch+Cazi4FzFWWaU2m4kDiMuv6LOHLxiXI308XwFyMM03iw7e/EuESUaV+TUPNEi99Yv701z557mylRFZu6n+4xg6+S2zP18NM82+o74p2COG3oxlNuZn/aLXkP0N0lpJRWiuflhIdolLcXLfmG2HkpoHNcq6qam266STt16tQx2JhZ1Vb3gD4VCcoeseOR1matW7dWqVT22KsWjg5rJWBEx6z03+nh/C3tnf5H/5BP2J32AMsSvgKKnsaXqDl5ZTyn4u6mWf0pxGe34lzaQHLVRdd3UZvvLf84vap8FlV+nbic05pgZ3OayAh5GE/iiBFNWRs7nTC3zaTk1gOgS5B5Qdbe5Ac5kzmQyzltaZ23kbOX76B9g1fRG9wx5nqSdKk/Br1HsYd0UDTOpizyhP3o268LdF4weBdsHQtbx8HNJ0GtAydfaDsVdjwCziHQ+MnS27KVw+/DgddBpYVO31ddhzWfc4m30Lfp3WjV6UDZv3ddDH/xfN5dLNY8z4I6d5YrhkvOYXxd9yUePv8FUyPfR5Y9a+dVLquj+Mjzd947P5QdPl35PXwC07I20ki9gSQZQbypId3L3TqEG04yze8bnGUmzyY9CykHINDh3VrVNG7cGKPR2EQIoZJSlmpWXGtW/Fc29tppdXV17T98+HCfmo7DQdWSI71Ym/0Ka7NfoaN+GbcG3kuE82bOxr1NbMwYKKajKaWW7ZdfK7X9EJddZBn8iM4o26Kvq7iE8MP5nUS6biDTEMi/jRuSJ8x+h3sSnmJPgmWR1pn0IXhoY9mfddfV505eNM9Hbj8xne0npltl23FQNhrlHOC8UzG6AAflR+MKHb6GxVFwdhY0eND8fL37IfMc7HuJgLq3W7kJlBWVNDIgYTmjL/8OiUug/gPQfrr52FVMbPIAhDAR6rMOGFmmfXuLH3kg7yEWal5glnZqheJY6z+M10+9QoOsY5x0M2sRemQt5oy2BWYLdtvZpRvMR43e5NODj3HAqy2S1hw39i99RxuQCEyomO/xNL0y/6bd4fch8AbSwNUQQgjatGkjLl261Bw4WGr98lhe1Xbq+3aQHwws2fLqznk1Y3kVHh6+fuXKlX2bN29erv3vKuR2Nqd8N8jVSkV1Y9VBRS2birtH8sxvt072Beb8+SYtvWehN7lw8eJo9h+dQk6uOXWnbxIIYcDJNYbMvDAKHObOWrIlkuJdcCwD90b0J9fkxYJziwGsNG0/PVB0LNX13re2rOfjHkXK95enFB1LbUpNWBR3/GEpZyv0dgWfVwEbixrUyYqFhWF8whL2MpylCqVHZdqGlec7WB7tqS3HV97gXChHetiGpyzlnEITEcr2Co759c7H6ZqwlXZDzIJyCZCXCis7mGUDnX8sexAmA+x/lcyj3+NGGnvVN3EiOJA3mk7lsnNotVm+Xfi+N0m5jVkV872VDVSqYtY7UPE5CgleXOI57RASZBTtxv5d8SAStsPqLjykuUQqQdximsI9plfZ596J0S230nm7ZfRVmbL1siJrsTKFdNNjJiaKoUSwj+/lTJZEDr66bVOPsocXFAcBuVc4tCmYP+U7LOR1xvAadfxW0Wnwzqv1avK684y1Iosvnq6ZOKqKb775xvDSSy+9lJGR8VlpdW/IkVZ71bTm61mbNWvWrPTKDq4rYl3CWXrpZzbGv0WU+xp6+3zE8P71uBw3iLMx4wkKPU5ks2noXOLJyQrl9OFJnDvxOEV1hwcHP0mE+0bislvRO+gV0vR1Ga5bRC5uCCTJ5+/hr4hbq/9FOig7xmwAUmufQUutYW7dO3n85Lc0TznEYe/8tQQ6L6h/nzmFbnm4tAqOfcr/nD5jr2YQsarG/FtdSdAVnEkfQjv/L1GLXMzrqIsnXOxjhPpdWquWkUowKwwv0a4ygsi+CEAv02zqyT10ln/yZdhrPBr7ETclLSKNUWVqTqJiuvyTe8WzvKQagjb9S/7yqJiMo1+iOdtKXfYSyR4G8A1zfBzXyOqiT58+Gh8fn1uwrNEtFjvsulUPdmp5Vbdhw4ZlsSxzcJ2RZohgf8oDrPj3ILsOzEClyqVnx1FEtZjC+eNPsG3pDmLO3EfT9s/QoMW7RbaRbfQDwNvpFM2859Iz6A1UGBFIdGQxf/NtfLvjUZwqYeWygyrm5LckE8w5KjcdpwMLW/y7szGgJ6v/GUjHhB2WDZnnwJBVtsZMRri4AnY9AR4NWap7mlhVCZYiVczhpHFoVZl0C3qn1Lr9VV/TUrWC2YZveTXvBKdl18oJIqgvK1RPMcz0GY3lZt5Rr+fTiHfZ5dGDXinl8x/OxZ2f5I/8zzSNp5KfpU3OvxUK8aCH+Y5iE+NpwRpy8OCpDjatC3JQCTRt2hSDwWDTF6VCI61CCO/aantlj5pWIUTn/v37V2ilSm2QAxSmJqddbJ0Wreh0XrFtK9oV7ynrOwPjzH+5iWi13jRQqXnvV4COdDM14uHW4zl6qjWnU28xN5UvNdiT9j6Hj7yLwIREw1bFb8+lEOiat5A3T41CdbERL/az5LRXrpOtyunL/flOMtOfsX7+3t+UDyzF2iYHKMy82y3lR763lBfffG3dAh78CXqqf2C87lP+zv0VZ4PZAa+jZbaSJoqpbmMhCbQyW1Y/RU6KhSMt5dF/WcphnSzl8YVyWPw6zlJWSgIKT71XBCs5SKEp/LJ+/kpbsMKXeaXM56btBSU1b7qt4K3Me9iyugdPtZ/GV42e5Euh5cmcy2DIBk1JPkqYO7hHpsKFPyEnDsJugVbvsdi7jMFXMnujQplj+JzxgQ+wOWUk540dAWsJRsG5EiKOstH0IPePv4+KpztQoPNmyJ3TgekgJe8IwRdpsCGoN7denMsSxYfU9Kh1WZmV60Qj8/+YMNDmL/D/VT5HRNYGxqW/w06PdXTZDts6ly28uucgRzbniiaMsRmTScmrj5OLniFLdNb9hFvK1m5lorQoux4RQhAREaEWQtSRUpZoLmzTSKsQ4jEhxEuKx22EEDFAohBitxCiHMqjmkNinxmxQkJCBnfv3r2Uq6ODGw4nP1BZ90r+k+NYbXyGoVF3E+m5gmt/2lXIYu5Jt2vNvaUUlSNXoT3TVT0bgEOGoTUcyfVPjsqNV4L+ZobvB3y25zmm7XmBd1q+AUIFV9YVv2NeCiTthtXd4Mp6aDIRbomGXgvB2z5sC/8zjueoaQDDXF4vsd4F2Zpwsb9qg1HMIq4NHEyjzOOEyqMl7FB6e4s8H6Jd9gZ8DVfK3YxRaPgw8DsCnA/T0HMxHtpLvJR7GxNz7qCFcYMjUUo10K9fP1eVSlXqLYet3bOnAOVSlOnAReCe/DY+KnOENUkp0oCaGoWVUnbt2LFjzRzcQa1jjmkax5LuZnTDoTzTTsctTW4i1ONfVCKvxP165s1Hj5bjmk4l1nNQs0zPW0qaDKCXdkZNh3JjIAS/e09kTI8/eebEF4w9Oxv8u0P0/66tq0+H49NhQYB5wZZnExi0E5q9CG51qz/2EhFsNDxMY+06nEkrttZJ2Z16YgeY9NUS1S7vzpxziaSH/P3qczqRgU6ULe3rdteBZKk86JtZsdTi/7kN5WKW5fe3q/Ev2huX815OX97KGWSWfjioMnr27OkWGBhYqhWErZ3WCOA4gBAiAOgOvCSlnAu8C/Qrb6A1hb11WoUQQq1W+3p5OcyMHdiGRM2a8z8w+8geVp6djZMmlVub9+He1k0Z2bYTD/cWBHjsuGa/9vpV7NP2J1bdqAaidmArOXhywtSbCNWe0is7qDQWhY/kyQ5f8fHeF0GfAimHzBtMRtgzEf7wgPmesPdFaDoRBu2AvqtA616jcZfEMWM/BEbqabcUW+eCbIVO5JilDtWBEPxc91GGyWnUkUdoJVfzZl0P3qzrST3nEka3C6EXTmx2vZluWcsrHJKnNhqAPKMbcaIuLvmpqtuY1kDq4Qq376B4WrdujUZT+kiKrZrWXKAgrWhfIAvYlP84CfAua4A1SYE8wM6oW79+fbucg6jtlkMlYU+vxZZYZo4v6tm25j95O2ScwevUd2QfNY/O1Wk3lRZ7LCMQxxuDc3Yy8dpATCrovN3SyuqbSj/++FmW8q4OEJ57Gr3Q0W1puFW9C4qHRcdsTs1YgNoIHmUbYCkXNW2v9t3DttX7scCWbEMOm2L8r1oBJfpZ6jRSJD38t7el3Pg4+CRbHv890lIeuMZSVmpSI85byspUngB3zlM86GspPvatpXy7wm5z/m0US7MjRT+vTANbmZ9L4baEQqutU0xIKLWTgXHwl9djNK97lifPfQzAn2vHMSBpKd6GZHOmLJ/24N8ZdN4lHr/vBuvH//Qp6yuoGD88WFDyIe6HNnTNXIn+nDmDVJBiNv1iKPg4aaEltNWnsy//+Yp+FsMU/cjlSpVL/ufwXpuJPHD+a7qmLCVBRl01OOjj9yZ+eXtYqX4SPWbFnDLdtadiwDj4MkhTGEGq07RIBMqoad3R0WLD9034JF66/Bw6dSbz+IZOLKIzZvH38Q33sMh/LH/7jSNBF1xsSuWq4JnPq+9YtqC0LQTLOoWKEBoaitFoLFVqamvXbQfwhBCiOfA0sFJKWTBWXg+zVKBWYW8jrUCrzp07V73jtIPrF6ECjwbQ9mMeIpW9DKUlq/B3sVxhVNJIm5x/SVZXXM/aJ3UJK482YN2RCOo5r+O2wLvx1ZyscLsOFHi3pKlYjzPV0KN3YMW7Dabwa4g5WX1g3mX+DBpvHlFtPglCBxXdYc2IhgNvQHIVa0PLweG4B2kR+D3uuqIzfUR5LyVTH8R+n+pzqjCp1CTpfNGSg0SFSQr+zX6KVFMdBrm8x3tOTfHiUqnt5OGCTpTR6aEI/uf3DLvFMAByhAdfqObxmCqWA/SncfYhXrrwMh+dvc+hca0ChBAEBASohBC+JdWztdP6AtAMc7aCcGCyYtsdQPFzDvaIHWpafX19O7Rr185+55cc1CokKj5lEedpzeC6E9CpzMMU9fMO4mlKYb3b7aW0UDR+nCOIE4xXPcbXZ0dcfb6b12e0cp/DiIBHae42v1JegwOgwcP4EMvjqjvwo5qmbR0A4GVIYfylbwAY23IFb9f/DEIKZZgzGSF2KZz4BjbfCSvawKF34eQ31R9wKRyOf4i03Lr0qvsMRY2heurOkZjdvEKpVsvDIe8WtNfMJ0q1g1jZkgVZ05mZMY93Uk4jpYrhmvdKbcNTXEFDyVr+0ojMPYa7KY1PVQv4RCzgRdNofjdpud/0OF8z+2q93qkraZjtkApUBe3atdMAJWZWsunslFIekVI2AAKASCmlYmKKifl/tQp7cw9wd3dv16iRQ2PooPIwoeEr5hDkupfRDcyjB81yzXqAc9oyekemHIK1vflUE8lUTWPai7/4POT9q5sbuy0DwE2VwO2BdzBY9YllX+WohDSBPg2yYvET0YSqDtJT8z0hKsePQJG4R/KtaQ5B4hSvq7vSOuu/mo7ohiFV68MXEeaUyWMv5S+GM+kh9SjELIEt98ACX/h3BBx+D/Sp0Opd8O0IGvsbfzBJLevO/EQD378I81x/zfZcozdO6tQi9qxa5kfcRpjqEC3UKzhptKSFy5T+LDK8RS/1D9QRRWf3VGHgVvE6/TTfsNrwQrlj0JjyWHSyKR9euBuDcGKnevTVbR1ZxHeEWtUfnFSxRV8OiqZ169aeGo2mxI5QmXxapZSJRTxXaq5Ye0Nifz6ter2+UcOGDWs6jCJxTITUPv53d0EpnOxfgqjjvoXAOPD/3yDkIME7czfwZz3LSKnKBBMVOqVPFNf/zyal8miTXsTltOao4UNO5QwgUd+AQzovns2fdHneby37nPpgEmpeiH6dO7Uv0kv8jLtIIG2eng8DfiRGW58fY7rihDmpwQdulmP83vgu3uhuWUVcVeNUteFcLnxpiux5G98ahzD9xJ1MOX8X9/hHgxDE1rHUSVNoNeMDrPdX6iqDFVfwc8Uscm9e6P5hxRBLWamD3aVIcq3UGzY+br2/U66lrNS+KV+nMvVqebSCSo3dgUL6OqX+UemLvF8xCx6imIG2On7gu3yzQTL5zIv0SlxH2pZ/8DSmmLcF9IA2U82jr+6WfMr7Ts1kY56K19OAdlXreVwUyvdVmaKVyfD2m92JTelLK//vWZJpWah9LsrASM81aFXxtFOs+2sP7K5AWqxlJbi1FXjmdr68jzgiCVId52/VZKY/Zalz36/30EXO5lVdN86kd+Z/qqlEi3YYNBCaG83jmtupIw5D11lMiBrLhHLGOTLaLL5tlrmPHfm+1kf2taZZVtEyj3/db6GimVQ7KjLJ76z2hPEVY38rCFeoTCr6/S2gSZMmmoCAgPZAsanobB5TFEJ0EEJ8IISYJYT4o/Bf+cOsGexNHiCE8HR3t7+7cwe1n7jk7gCMHSyQUkNM7G20af0kHiprrZiaPJyKsJsJd9uEkzqVv6IX8m/aK8TmdSBHetPP9PPVOqe1rTEJs5fsWsOz/KH/hK3Gsfytf5/1brfx4ZUxzI5pS6bKi5d9VrDM5UGrY1x2DsZB8WSp3fkk4gOCTOd5LON5h6auGvm8zjt8H/IyecKJ6UHvM6LRETq0yIKbNkHDR6w6rGRfpk3qHtYHDCy+wRrm2OUHiPJbiJM65epzXZx+Ikq7jThjI8LzqleXHuscTiDRaMnjKL2ttknUfGX8i9+NXyARvEkPmsoN6GQWz2hGoMbA6/oDEDW2/AEYsnk9y5xKdomTpSv6ecTbnM6yGCOdzzEvbD/i0pbzTvY5wFTbadSoERqNpmVJdWwaaRVCPAZ8BSQCJ6GC4pGapmZTtV6DEMKtadOm9udn4OC64MjZl6gbbF4B26d3V3bv+Rk31zOMcn+Wuek/oZcuNHdawi2ez+KrOYdRquH0d1D/AciJo1/ocyTlNiHPZG3HFiotQ2o+piukqs1LsDPxs5qqOxT4EP/zfpEQw1mOyT4YhI49Tv3xOxNIQ+8F+Dof56x7ZNW/EbWcY26teMfrD15JvZckVTAzfF+u6ZBuCKRQ8VWdNwFwLi3zcdIeTAh2+FRSCtQq4GziLfSSaup7L+RI4gQAhri+xeG8odTXbmRWdCeeCVvGAddu1RKPk8kyFN+SNWC62yqZSg4ebJL3s814F9+qvKjDUYYxDU9xhbf0e0ihTlHN2obJAP+apVP7NP350+lqDiXW+N7Ce5pJVx8vjv+RJQNdWXW0ATsPekDwfxBgv59zbSQ8PBy9Xh9eUh0hbbhjF0KcBv4BHpVSGiopvhqjbmAH+fJtu0qs88Q3YreUsloG7YUQTYcOHbph2bJldp+iqKYtg+yJ2vBeFMQYmH2FupnnWDxvIp6uJ1i2cyu39TD7FKVkNcLT+TQ52XXQOcVxydiSOrpdbEt/gnrO/6Alj1UJ0ziReTMHFffAdeV+Ps1tw1nRmhec9l7NdrOukD20cnpUOY0bHWn+//W++xgcv4Q2Q/YR6xpmt+9lVWLruTRyEQzTf8n4vBfp3+YUl3Vmh5j6py11gi9b7/OrwnIsMtpSVk6bF1hqAXQqZO2bpfA0uaiQ9glFoKcUU4JXCl3F7PV7MnyZpWwoNHyzclA5G937IlxaBUMPlF63Bih4zS9l3Un9lHPMOf0vA8MepZXvL5wxdKGeZhvRhk54qi7xfuphcvHgqyeqJpb7Zpr/T1A/RITpMDqRQbD6CPMzv+HOh4vwhstLhb+CQOcDmBgTsYKjrmbtgtIyrUxsewDO5M8YjboMLkHW25N2w8oOnFM14VmfrXwR15cI9T4ANnkM5tH6K65WtSWGu+ZaylWVcr3tPuvHe9tUzXGUKZGh8mQwYWFhV2JiYoqderN1dC8QmHM9dFjBomm1I3lARKNGjZxKr+bAQfmIcwlip38nTl8ai6vTFW7rUY/zCUO5nNqNy6ndSUluh7PLRWLOjyXcaSe7Mh7ASxODQbrwS8xGTmTefE2b0arWPOR8gZedtlulZywrm/364J+byPEljXny+JfmxVoOimWl5lHUGGiRWfKNt4NqRprg3FwIL8Go1k6Y5zQZP+ejTGjUhla+vzAzeybr9E+jl07MyFiClhz6O0+rllgixF6itFv5LWMWW3Ifpa/LtKLlLzovaD7Z/P+m/652WMuNMVfRYb10bYcVQOvNHm1/6pqO8XNSY8JUB5iV+wN/5H5K68ytqKQjS1Zl4+npqRJCuBW33dZO6wrKbNlr39hTp1WtVtdt0KCBR/Ue1cGNyMmL97PrpDnrsq/HfoK9/qNB4Fx8/XZy+MBU9u02r5JONUbwW8LffH1lJxnG4vWmiSIMg6jY/dac8PF43pbK+y0m88neiebRKgfFYhRazqlamlcwO7St9sOVDZAVA5F31XQkpXJO3ZI/zyzH3/koFzJ6sd1wLy4igzxcyZCB/JP7LL2cvkJLxb1PS0OPeXXfk579OKXvQ5D6BKSfKrpyy9dh2FHwqF/xA6u00H0u3JYKLkVc46SEfwZT13iEPHT4yDg+zVnHZsODHDYOwtOUSr2coxWPw4EVkZGRYLZWLRJbO61fA+OFEG8KIboJIZoV/quEWKsPYV+WV76+vvXq1Knj0LQ6qHIkag6ee5lf1krmbTtDfHp7NOpsALTaVEDFyeybCNXtQSsyqy2udK0nHzafxF3d58CxTyFhW7UduzYyW/shwxPn8Or5F3A2Vn3HwoENnPoeAvuYE3zUAi5mdeOrw1eYe3odEjVXTI1wE8m4iQS25d6HuyqRQPWJ0huqIF8bFjA7/VfijI0Z5PIOmSYfOPZJ8TdkFZjVscKYA55NQVPMeFHyPsg4hZ/pErr8ZTztNfPxFJe508lscdAop9aZJ9k9ERERGqDYkRJbLa/+yf//JvBGoW0C84y7mlqEPS3EcnZ2jgoOrvrV08qX3KDQjaytNhWVOa5jr1o3W7HXmJX2I7LQ5yosC/7psEvH93I745KmcCQ4nD/73wsCxqz9iffoQGvXKaSvecdqf2W6T2W6zv8UazYKn1soZvEKdKxgra+8aoUUPhojatSruzLO9wzZGYqV2UCGwmBjxWCuG2w9lxbeUlAazFsr5vB83KOMjp/Ne9qVnFG1ByCpUD6ZbgprV2UaWKX2VWn5VNjyal1/zB0IIbgUYnm+yTFLWfmZ37O2UNB3UyGCFLZNSr2srdcPpfZOaQEVotDgFU5dW2ayL0HMX9BlZgUbqhyU700Xxf3f1mGKDcPArPyDDyaDRt0EmkCblN0k6JuANwTEVzyWwtrHAlInFJSCmPHYOHa6tuH29q05FX87USd/IvPEQv6X/SPzGlmkSRsU5gLl0bE+9GNBSfKqZhD1dJvZnPUYCzK+Zu0Ay7tmUkForg9rgDlBD/Fl2Ous3dsEcbk+Y53fpqmr2efWlOtRavpp5WfRTGHH1vxIBbS4JWCrhrVwF2jCTEv5lwml71+ShrXTTkv5eCFL8NK0rxEREa5ASHHbbe209i29Su3BDn1aw0JCiv2MHDioMkxCzUy/SZxXnH5JqnC2m+6gCZvYWfyuVcYTPrt5Nv1hpqT053fVFNTSQAgnMKBjm2Egp9Vtqz1rjz2ywfV29jj155WUCbyeM4Qpur85pu5eoTZ1ZNLcdz4NPBcT5LobD20szyeCwMRyp0d4Wn7teO+L4sjH4BIK4WNqOpJyk2kM4nT6YAaGPIVERZbBlxR9VOk7VhJJWa3YfX4yrep8yueZ/9BZN4sHXceQlTmdJW6PVOqxOqjnU0+3mbWZrzDA7SMO5N7KWqxXkF50iqRjy3QSPMx3yv959aeV3yzistpfrbPXpVelxuUAwsPDnTw8PCKK225Tp1VK+W/lhWQHiJrJelUcBoMhIDDQ7o0DHNxAeBKHE9UnD1ByRtOaV71WMTntDp7R34MGPQmEY0LNPWmTuKyKZL1uLOhfAu2N7W2cpvbjLd8/eOvyON7N680v2k9ZrCnB9rxgyrXQFKsvFxio+oxeqp/R1NETnT6Y3fHPkp4Xwf6WKjxlAo9nPsWTMSF8GV54su0GJ/sKnJoB7T4Dta6mo6kQay9/xrA69xGb3ZVdSU+SW8jmrsJIyXOnp6A15YFvpFlK4d0KMH+PD198gvYR72NEy5zs70g2RfBCyqOkCx82uJYv9XRhmqjWcZ9uPBuynmN55vtEabfwuM8AWp0ZxPdBr7HXrcfVullqy/Xlw8iPmX3hPlr4/4zB5MzD4f+SparmzBE3AEFBQbi7uxd7t1SmjFhCiM5AD8AXSAI2Sym3VyzEmsHORlpdXFxcqvwgVlNoimnj8Bjr7BYXwqo8lGvjuQEofMpV1esvSephdcxiDN3G54GrKp04GlllWlLaKgHUibWUlfWUXpZbClk9KqeGeiim1UYssZRX3wzgDayi38Y8QgxnuZCf2a9b9DG6qOYw3DiDC7NXMevKcrJNfrw3uejXcj1jmSp1AfkHHJ/Og3ueRXok8bPvaxiFBqRkR9hKOP0jJB/AEH0Wo9Cwy70XibIuW1xG0CBvH7e7fkK8UwCTGr3F5/Um0EjnTUEuxauKhKOpPHDgA+Z4TSRH5UqKNwhpIlJ/FOcrza52hLNcrS2krLIyKe7NldPGJU0ZFicJUFp23VpIknBYkb08Qm8pn1eM37gqpMCbLNlDy87+V8EpAOpNqEAjlYvye/6EIsMVXYquP+lqRuYmwFbCqLyV11afrVEPx14FIEu44yozuKiOYs3obbheCcQLuFcK6qdFk5Pehb28jmyexHPJT3Ay9ybA52pTtl5Pb1KcG0/ITxjh9DLbc+9jYdYnXKyj4lX5L/ebnmJwxtcgBI9FrShm2r4xNNkCsUvQAD+HdbLp9VvFZUerf655vyYUXU/ZNwDb+gc7OpYjoHz8/f3RaDQVs7wSQrgJIZYDW4EPgfvz//8nhFgmhHAtsQE7xM7cA7TVe0QHDkomgSj8xPnSK1YxBqHjgraxuUMkBJdoyt+md3jbuB0XdRIPhvRChb70hq53hIAmz0CXmYxP/pC555rzbPzzzDvXDDYMNdv7NHiQiZHzeCv8ey5rw4nQH2dK/AhGZsxgWpMXaDbsCF80eRZ03kUfo979mFDxVsxDjEz6mfeu3M7Sc8H8HtOCPsbZ1flq7YdLq+HML9BpBqgdroWlotZBxB3gHMRDfge4M+A8BnS8lTIaLTmkEsImJtDF59Oru/yuexdnMmhnXFmhQ/fN+Z2Rbi+yIPNL5mb8gMzv/qgwEijPAvA/v1KSswoBYSPMfw6qBD8/P4CA4rbbOkk+FegK3AE4SylDAGfgzvznp1QszOpFYj/uAUIIlVarrVWL2Bxc/zQQW/HlPPY6Hp5AFL9fWUiQ7gjjg4fUdDj2Q71x3Fr3JLtd+tA2eyPb3QbC8GPQZyk0e5k13rey2Hccb0T8xJPBGxkalsCtdc7zbss30Jc2te3ky6sRv9EzbRlvxjyMlzGRRZ6PcFLXijv0bxFhusFWUuckwLb7IXIshDrOQZvp8jO4RvBB8lBMqJnss5QIwzGeEyPQkcUhOZAgpwM4qVIByBHupAt/PGX5V4UFGC/wTPpjrM16ic05j6Mcpx1veo4Wch3Tg95js6fjc6xp/P39MRgMfsVtt7V7divwspRyvpRm528ppUlKOR94BbB/N2UlpYyyVvNIq4enp6fDTd2BXeFKMgbse+QoTt+cOVf+oL7LuuJ9HW9Armgj+CjoO8ZH7OLTgC/As3GxddPUfpiE7ffMWzwG071FCm1b6nkqdB3f+77LC8HLSBf+vJY7DK0sLc/pdYI0wdZxoHaBjl/VdDS1C40r9F6CUWj4JrEjGvQ877uBcA4wSfTlLG3JNAYyMngcBTfNOpl9dWS0rLibkpmcegeX1VEsz7J2QwmQ0dxkmsF36h/4IegG1BjZIa6urkgpi529t1XT6gVcKGbbBaDWqZHtSNPq6eXlVaPDWUqNilea7VqzmqS69KGVSUVjLOmUrWjbg1eZ/zvJTO5w+pxA41le125EBlqOuquQBnZ/66LbKqxjLaCw9U2gIgHNyYaWstLiyLOQqYZakYBm4UhQydEMXu2Dz+W1Nvlj1nabNVsoSU9WUYudgy0KSuKqVjCbMMa1WszWfSF4ha9jg/cwq7SuSu2p8rN1VjZc6DpT3DXI6jNT7jPaev9emyzls4olHUp9rXJGrcUh5Wuz5prvnZS8ffAt3riyDgZuA62dXiTzya765RJlxyWIeqP+Y9/SwTyZ+SgPR2xg+omtPOI1lKfkWPbv/I5e3YbSJfYAvkmtSWnalt76bXz11JM8+aW5icLf30e+t5T1Wuih+pmh6in8rTpBqsqHB8J2sL2b9Y14A2Mcmi0GNrfz5lBDbOK2Py3l+bXALKKiv5XVtcalACEEKpWq2DtpW29d9gOPCWG95DT/8WP522sVdjTS6unt7W0/XWgHNzSPZj7LKOOH/KmezFFVRVanVA8moWajXz+4vKamQ7mhcZbmBBVx2tAajqRqEdLEx3tfZPLh96HzT+DbtqZDqr1oPZgS9DVtszfxbPyLpJjC+S51BX7qM9Sr+wPpGQ3p26sH9X3/5Fj8eBoH/I9wr9UlNulMKi6koCGH8ZqHOSF78nTIakZHnCVGe+1N7R6fTvwS8TBf7X8AF0M5k3QYsqG8+zooErVaXWzf1NZO6yRgEHBMCPGREOI5IcSHwFFgYP72WoM9aVoBDy8vL4em1UGN42+MYUjuj6xSP85czXs1HY7NrAsYBLFL4eDbNR3KDUv79M1kq1w45WJHy6MrGb+cBJZuGM6TJ75iTI8/Ieremg6p1nPCuQ2vhs7j1uQZ3OtxL0mmSGamzcfXZycuzrGoVTkMaXwbPi7HOZc8mFbBxUsxnMjgZZdufOQWznPaoaiFkSWG19jhehOZ6uKtu5YF3UJAXjxhWTHF1rmKlHQ3ziHStM/y3I6H4A83ODoNTIYyvHoHxaFWqys20iqlXA+0BfZi1q++D9wO7AHaSSn/KWF3+8O+NK06JycnO3KNdXAj4mpK5anMRwE4qOpfSm37YnbE/VD3Tjj/R02HcsPSNW09p5ybkaeybx10eemYsIO9K9vSKP0EXQduZWH4qJoO6bphredtvFTnT9o5zyNQfYxT+r4sW32Bv5emcSb6IUwmFe1Cp1DXZyWB7ruKbWeI7gPcRCLL8yaTLMP4Sr+ARCJLPf4uny4c9GjF6n8G0iDtpNnLeO9LsLwNHPscLq+DlEOQvB92Pcmzxrt5yPiopYHE/BQseyfCpVUVei8cmBH5FLXNZp9WKeURzG4B1wV2pGnVOTs7V1k0ZdXw2auGtTDXqx6xJJSvefws6233Ku5Lf7unjA3nJjEnvh4aVRbrT/5Kty2DKJClLh9qqTZrrPVuynOr1QHlg6IPk1bo3LLpXCucc0Mxw9f8iPm/qzGLw0m7OOsWxc2UfG7ciOdNZXLfTEt5zQRLef2feeiMqqtevkqvXmXq3eLS+BZGea7c/4ulvNuSjIgDivPsuc+s9w9X6KVDLxZdznQrdNBiNK3y4irYNBpCboIuv7JXV8mG+1VMcdpze2B3QYpnOYiLcxvSKHAWO3UfcKwJgBrk1/x64hjOTpe4cGkMVxL78XwxaaGXeR7hP9UQpvu8YqV9V2qawdqft/N2uClnCc3SD6HGxMlj08yWb0c/JtqlHpF7nisy7h993ibRCVoegk1ZCcwM/oCnL0/mqeQr/OZRyJsY29OkVwVVec2rqjUCWq1WAlogr/C2G3KEz87kAVqdTndDfg4O7ISsCzhpUll2aDUn4sbVdDRl5vHLb9M89QiLwm6hXdJuyEuu6ZBuOAJMFzipaV96xdpG/BbYeLNZCtBjAdSyDmutQQi2qUfRwzgXV5lq9fyOA9+j0WRQL/wX0jMbFduEi0wnW5Q9Q95dWe+zzmksDNkHTZ6HI2YHz8jsM0XWn+c2kV1Og64+PubSlmcvT0KFJEXrU+Q+DsqGotN6DcWOtAoh/gBelVKezi+XhJRS3lGBGKsdOxppFSqVyn6icXDjcXw68RltuZjau/S6dsgq79von/kHP+x42PyEzgc6fA1udcG/CwjHPWGVkhNPM8N/LHB5oaYjqVyyYmHTrRA2CjrOuCb1rYPKZanmGXoY5zIp92ZedVlFnjDbHmRkNeDAsQ/o3Pp+pCz+u3xZHUmo4XSx24sj0HiOX9zeZ6BPazj2BQALgu/m9Uafk67xpFFsEt0zVuJnuMJKrzvJTY+02v+gSye6ZKzjr5DbWRk0/OrzOlMurTJ38GTs23DJB0KHQp1h4OxI2V4a+dKAIj/skuQBAVh6uoFcTzNrNZD1qgT0ubm5VebTev18aA6UFJ5atZqOslEeMPkDCNXt5uGQ/3Eq7j1E/pfikGKaVDlNG1Royks5db+/GEmAksLnYlS0pdzkmKW8YrClfM/v1vvsUGROjMu3YomhM9Gm86ilnr4ZC3gv7i5MW+5FJUzEa0JY4jWBBd6PcFlb1zp1Zw8clJFfJhTx5OkfSVX5sdV9IHn511WlJEBpeaXkbGTxx7E6V+4rPa7nCz1WnicNT1rKjY8rjlHCb0DbffB99L14ySAadfm5VndYY6rZsqi8JKtCedtpDVNzOjEm7SsWaV4E4Nfx8HjGdnJznTgyfBdRZ4Zf/TyU150P1AN4KWscdbLPs7SbJV9vt/+sj6O0Y2vDMlQYydGpuXkpvJu5hDZA3/g1PGf4ghEpMwkymPNVH3Dqxh8ur3BIMaGQ6glEPQqLPqRn3GaaHDF3mV5NHsvw1N8A2KfrxeY8PZ0vPEKmyouBzaLJVpm1KcXZrHXZbilvL5RP155+06sqFr1eD0VIA6AEeYCUsq+U8lh+uU/+42L/qib0qsOO5AH6vLw8R3IBBzVCXactaEUuRy89UtOhVBij0HLKqRWpMoAPWccL8gR/eD/B4NTfWXy6Hh/G3oFW5tZ0mNcfGnecZDZO+bZX1wM905fSMWsD74V8B5rC4lcHVcVFVSOWa55kuOEzNIrv6k9uU9ngdBeTc0fQ0LSzyH03Ot3GJXU93k8dQkDulVKP1T95ER/F38wS94fZ4nIzTjKTFsZ/+dR5FjG6+jyQ8AFpavN0f65wZr7nM0U35BYBN23myeANV58yCHPn9YhzO77w/prX/BZyV/BZvE0JNM9SxC8lXFwFx7+E6N/BeIMk5ygFg8EgoOj83DZ1z4QQbwghijTgE0KECCHeqEB81Y7ErtwD8nJycuzp5snBDUSGyTxcGuG7DJ2m9mtBo3XNeIIrHKUPV2jIz/6TuaX+aV6os5Aumat5MOV1/A2x6EzXTwerxqn/ADnCjbsyalU27+I5+A7TL9zMn94Pc9Clc+n1HVQqy7RP40YyfYyW1aa5wpUv3L4nQYTRxzALD5l4zX4moeFlr3WEGM/QK2F9qcdpn76Fo7pOfOr7DUahJdJ4EA0GDmj68kTESv7yfoiGuYdY7XYXw8PjWO92e/GNBXQnRmvJTvBh8Dd8GPwVAskbSXdwX9obDM80Zz+okxcNQN3cE/DPQNgwBI5+AtsfgEVRcOJrdKYbu/NqNBopyL5aGFvHFN8EiptkCM3fXquwo05rRnp6urH0ag4cVD4if4JnQNO76Bz1Sg1HU1lYf4FNQs0mj5vZ79Kdu9M/5u+LYSyN9YeNo+DMTPNim8vrIGl3zYRb29G48rPHe9yeMY2medtLr2/P7H0ZDr7JB8Hf8H7od7VaFlBbSRWBrFI/zh2GN3GWGZYNQjBH+zbDDF/zU1Yd6huv/b4mqMNIVQUQnHsJlTSiLsE31cuYRJrK9+rj0Xkfc1bVkjThz5jkGZiEmmzhwjFdB7JUHiUHnXKIwRmz6J8xl+Y5WzEILX/4PsH0wI+IMhxhfPq7TEg3p5Ctm3sCL0MiP57pD3mpMGgHjDwHt1yAevfB3omsP+vBN7G9uTX16/IlPUg5DL8L2PlErRy9NZlMxfaJhJSlD/IJIUxAZynlNePyQohbgJ+klP4VirIaCQnrICc8WbzfG8BHr4rdUsoOJVaqBIQQkX379t22fv36oNJrWyicErO2WFU5sB8KLKPujv+KybFPsePc2+y+8AZrbrLU+UthR/lUIV/vhSMtZaVWcKcijWi9Qgtw97axlJso9rlzrqU8/zZLOajQLN/h5pZyXDHrGZQayojzlvLQ5N/pFL+LrU63EGw8S2f9YjrkrcJFWn4UdhnH8Kv4ghQsE0uzi/GQL3j/oOLpUWs9UsLGkZCyHwZupflZS/5d5XszUJG4bLXiPKsoo/+2fqw8b5Xn2fCllrJesTY53QMEJqbp6nDYNJDu986skg7r019aytOfqvTmrxtanE3mn11N2Ow9gNdCf7v6WYTFgKcpgUnpdyIRjG9qOaGu6kPX9IT4zZgQxKob8EPDB+kfv4oVQTdzJm3Y1RHR/8U0Y3bjMbzZytyZTJoTzFbtKK6oorgv52VyhDM/B7zM40mfwC3nwcnSwSXtBGybwE6Tnpn1JvD1rietX4BzIAzeDWdnwf7J5kVYDR+Hi8vh5Lfg0RBMesJ77CVNa3akKLCJ88+Lo0/sf/RLWczg5PnocWKB92Ms9RxPjK4BO23olYzbvY5ZxwdYnhhxFtwjbX7/a5qwsLCLMTExdYraVpJ7wHhgfP5DCXwrhCgsqXcGWgIl51azQ+xoIVZaamqq/UTj4IbCVx/HqKSfSc2uz/7YiTUdTpWy3Odu9mXfDcBBbW+We0xAK3NxlpmEnnMiSrWTsZpHmSKaMkPOZi8jajjiWoQQ0PVXWNsL/hmCW/hGMtW16066h+oX3ElkmfFVujtGWGuUVK0Pjzf9gzkH+rPXuS8L/B68ui1N5U+yKghnmVn0zn2W8/Q/e/E0JfJMypM8eWYaW/x68+7RF9HK5/jZ+3Va5GwlSn+U9UH9ru62SXs7I/K+JEkEA3BRF0m0U2MwZII+1brTakiHhK10BPxzE64+nalyx82UATlxcOh96Pg1pB2Hc/MgYRtEjIHOP8Lxz6Hr7KsdViUJukDWeY9knfdIpoRNY3zsDG5N+ZYHkt7joHNn8H0UosaXeFO11as/7dslMftYP5pl7YPFUXBrovVrsGOMRmOxI60lyQOygMT8PwGkKh4X/J0FpgIPV1aw1YGdaVrTUlNTHZ48DmqEN2MewdmUxaKD/2AwudZ0ONWOXjiRrvIlDzeOm/rwVt5+tjCWp8WtdGBBTYdXu9B5Q58VkJfImxceLbW6PSEw0V09k22me7gsm9R0OA6Abd69mRH+Es9ffJmWmTustjXRb+eYphi9sdaDA0692OwyirFBJ2h800UmtP+DuoOSme/5FPenvEunnLUAbPXvenW3n5yncUXUxVdeRi+0hOZF0zdtkXnjzsesj+HbHnrM56n20xnV62/EXSbaNdfTrVk6AxrHQsgQ8GxsttuLuANMuebvx4W/zfrV5pNBW/pNXZrGh5m+rzIiKpqHw/7llFMr2P4g7H7aPLtRAq6mTLwNieSK/Cx1x6eXejx7IDc3F4pxDoASRlqllPOB+QBCiF+Ad6SUZys7wJrCXkZapZSGiIiIMmtaHXIABxWlyZks+qQt5XOXmRxrGX71eT/FGodhyxU71AOhuE5eUKrci1O8tyn++McaW8peisQzVue2jdPuXbdZymfqWcrnI6zrBV+2lNcrPE9evSrFdOLbRl+SYXDjScMdLNBM4o1fR5NMKOkEMnO8ZZ8bXhJQFK51uDdiFr8d68fKjNGs9B1D+z2WzbsrURKg5Fxd68dKe7Y4xXmmlI4oz4UJCZ8QJXayKOcjdFW4wkA4ltzaxNVrS/BrbF58mNkne/Ct98fsSH4agCCicT3dmNHKTHwK+6h/r1pOu139zDM17tw25GNIfxi8W4Axl1y1Je3wzWjJEl4gYb9PK8651eXWC/PMGy+tYsiBw6xopdAnRYxBofbAK8rcnYomFDwVF87QIWbdqmdT8wjt9ofgv3tBGljufDM/eb3DKV0bNva07BKlkLEa1QAq/vHpxbzAXvx+5RZ+2z2az6Qvr3R8+2q9ArlS/ezDONWXhKYeJjTvgqUhU55Z35p+yvz6qbqMVhUhMTERjUaTVNx2m0b4pJT3XU8dVoRdWV5hMBgcC7EcVDt5OBOrakxLwz81HYp9IQSzNR8xUzuNAYYfeUfbli80IXQWc2o6slrBds++zAl4hGdiaompjJR00/7EurxnOW3sXtPROFCicWWS/0JmeE/hiZTnGcR0XEhHLYxkm8ox1a12utphQ9FhBQgynSXKdIBYVUNyVU683updq+3O5XUcEQL8OoLW3bzgs+0ncEcOzwasxdOUyM9X2jI5cSwUvVj+GlYHDWNqw9eZcP57yIoxP5l2nOcvvszoxJ9YfLwFh5a3ZN6WO83bVFpo/xW0fAsOvg3LW0LS3vK9lmogISEBlUoVX9x2m7tnQohIIcRrQohZQog/Cv9VTrjVhx3JA5BS5uab6TpwUG1IoWKz9ja66x3T4NcgBMs0z/CI8zkm6s+wSd7HcPUHNR1VreGvgAk0yDlKvexjpVeuYaJM+wlWnWCn4a6aDsVBUQjBfI/n+NL7c+7hed7EPKXf33cStwffRmuPWQgqbnWeIbw5q2pJsOk02/06c9SrGR0H7SBd7ckS37s46tamYgdI3AVbx8Lm20ClZo9zf54I3Myr/osYlPUbXFpTehv5/BV6J3kqHSyKhM13wLHPeCBuKu9eeNCqXqrWE9p9Bo2fALXOPNoLsOVOMNlnnyMhIQGDwXC5uO22+rS2Bw5hzrVzD9AQ6ACMAboAtcY5AOxO04pWq02Mjy/2xsKBgyojyHQWLTl0V/9c06HYJUahJYEodpjuIFwcghzH99QW9rmZ9YYDkhfWbCA24CnNC2kk6hqOxEFJ/OX+JN8xk/OY02Al6M26j1sCH+CR8HbmhU76NMiK4bct9/DE8a+omxFtc/uZwodn3fZyl0cKL7T/FIBdfh3p2C6R5xv8jlGUlEDUBs7PN/93V+iXhGCLywi2Ow+CszNtbuqMWwPa9D0NrT+AmL8h/Qx/+05AjwZT/qT/32EjCRl1CRo9YdkxZJD5f/oJ2Hw7w2KWVOw1VQFxcXFkZ2efL267rZ/Cx8AC4H7MWQoekFLuEUJ0A+ZgXoxVexDVLwEoCSFEzOXLlzuEhhaZv8GBgyph6TDA+B0crst9hx4gKDOW1VmvW1kBaQvdjPsqlEZDVlrK/3WzlG3VW1vpqSqo0d7apfht4TGW8poBRddJ9LOUPdKttzU5BkJ0x9hMy/P7/mWVzxjAWpPrwMLJBgACkh/hxZjPeLH7s6B2vqZeZerplKk5A+OstauhFy3luucs5YKUvpfpygmXdkx078ptQbFkqapuwcAXT1dZ01YMUvj5rBpYPcesKixaT8HANWMZnvQ+RqMKl2zBP6fms8/5JPe0bwSrLYuqRucFcOuplXylfYozeT34NnktRpx4Umdp959CeTwPDwdQA9aerKKhpZuk1PgrLfdONLJuq8hzW+1i/t/6/UKvCzjQCWItHcjiUhy3PKQ8voZjJ38lEhVLRSBjBv8C2R9C4nZwb8Ao7+Zc4/DqEgRtpsK+l0iI28TSmIXMihzLIx1nmIPW1Pxi3IsXL+pTUlKKlaPa2nVrA/wOV8fgnQGklP8BbwMfVSDGGsGeRlrz8vLOXb5c7Gi4AwdVh9oJWr3NnPSfGOr2BiHqgzUdkV1ikK7E5bSiRWbRKSQdFEHLN83WP/H/lV63BsnDjWWuD6LCiMl2xZyDGuJdz/n8z/UNmgb9wh1tWtEi5Gt2Xnid04mj2B3zCiuO/ckfe/czc/sVFh1cT4R2B3d7jaOny3TqqbfUXOCt3oI7DRZNbQHJB+DcXMgtdu2RmZx47k74knvjP8fHYJ7xOeHWjFOuTXi90efmOi7BEHYLeDcvvp2mE6HnX/Tpb17LMC56NpvW9oQ/3ODCX+V7bZXIuXPnsqSUxXaIbB1plUCelFIKIeKAukDBlegCZrlArcJe3AMAkpKSTl28eLH0ig4cVBHbc+6jl8sXDHObxIzsRUjHj3chJF66c8Q4RdV0ILUHlxDwag5X1kFwv9Lr1yAN9Xs5ou1Kjsq9pkNxUArRmpZEa1riub0P4d6rCPNeh5sullyjN/V8F5KZF0J04kjiMjqSmRfKnpy76eA8i/raf/FUX+GwfggLsj4HGuFuTOWpS6+bPYV9+0JAd7jyD+QmQsTtkLSbucc/5/3mkzno0+pqDO6mZHxzzhCiP8dmt2GAU3HhWqMqJEGR0mynZTJAYG/Ydr/5f+S91nUPfwQH3+Jx4YoJFc9ffolPct/k3YZTmbdnIH/v7g0he8261dIQAsJHcRhwviObNsn7aJe4mw6798CmW6HNFPBuBd4twbVIf/8q5fz583lAhTutR4D6wD/AVuA5IcQuzF5aLwGnKxhntSKxL3lAXl7e+dOnT2cAjiumgxpCMC/9B5727kln4yy25U2o6YDsCg9NLK6aBI65tKnpUGoXfp0gfnNNR1EqTjKLPGFjx8OBXXAxrTcX03qz/bxlEMpdd4HGgb8S7rWWhoG/4aRR5kMSxBkb0ly7gmwXL5JTbuWzaEX6vSvvQ50RELvY/HjrWADuAGZFjeOgTyuaGzbxaNaT1DMdgPymPwj8jsPltarPvggJWwEJmdFm/9fo3yFpF7Sfbu5gGnNg/6vQfBJ9hdmR4/74qTx39l1m13mY0e3/YfuW+nB+HkSNLdPhc9XObPfvwnb/LnzjUQ82DIV9L5s3+rSBIdXvMnD27FmJeTC0SGzttH6PeXQVYBLmDFgFy0IzMS/Iqj3UgASgFM6fPHkym2I6rcpQhy2zlJXaQ6jd2iWlPhJgxeCaieNGZXd72E0n6iXdz0DTR+zKHodERcR5SFAss/zlPktZqUPsqMiK/FIhB61fFd6mSk2hVKR7VZ7jylSbAHViLeUZjxQdf8NTlrJ/gvW2POW6B8XzYQqta4RiNq1w6tjT9aG3ZgkGqWVe61a2XzVvdExGOP8nv2ue5bcV5qe2KByllDrmiupbOypUGzGFPIPDFT9/xxR5A5Qevi7Rw/jy8DgS6l8izsmSgrYwUdFFP6/UICo9YgGuFJNuuCqpzb8FJWGV+rdIz99w4LX8P3AxZONsysHVkMX9p3/m7q172ZzxBkczRjFR2+HqiZcuvDmvaUpWXA6KyxJ6dCzWPYPf7tZs3jKG7gZrp5W5Hs+xxnl8+X3TXevAqFjzSn6tF+i8GHt4CTP3j+RszGrycgJIFqF0B94+1ZM9t+bfWBlfIu6vb3jn6Iu82OAXlvjdw5it4/jrxFru6/qr1SGKi62FlT4WgjRDeLDR59TPPsz9F36A5H1EJiQS7e9XdAOViPL775GT4wakFFfXpsuvlHK2onxUCNEU6Aq4ANuklHHF7myn2Fmn9dzp06ftxdvXwQ3MHI+JjEj/npa6hRzIG13T4dgFQeI4o7WvsNLwMsPtYKFCrUGowMkfYbT/S9uSwDG8f/wpbrnyBz9EPFPT4TioJHI0LuTgQorOh/davo5aIdn8lMUEydPE0gxn7yNMSRkCQKbw4DW/Pzng3BOXdBeQkneyBtPQaL4zSjDVZYPxMX6OepA0dSV06Fysb5JWB9zMHe1W0yZtJ22jY6hjOs4nTnPYp1bciaideLbR/5h1eCCxTnX5OPwjhiXNZXTiLOpsOcnA7uXTkU8+NQlXk2X5VsfkbeA/rFxtlQuTCV1WVrqUxaf7stXyqp7ysZQyQ0q5Rkq5uFZ2WLGv5AJASkJCQum1HDioYi5q67Mn7w5ucvkQ+8mRUnN4yniedhpKjKk1y/Sv1XQ4tQshIPIe+uXNRiUNNR1NiRhUWpYGjuGp6I+IzDpV+g4Oaj1XaMgBBpNIBPud+rLMxexx6ibTGZ71M3kq82r/SNNB2hlW4yGTiTPV473cnaw0vFw5HdZi2OTbny8jX+EH3Ze85byazZo7kcK6Y7LVqx8vNJzFUzHv8vfhDhx0M48Rd07eyjf7JpTruG83/JhTbg3Z7NuLbJUzPnmJpaaLrVQuX8ZFypiSqtg60XUqX8M6B5gvS2m0NmBPI61SShkSEpKVl5eHTnetkNrqlKnGm57qRGmZ5KD62dRD8aDFq8hlremdvphTabegUvh2NztiKQ9SXAU0iimoTT2tv19j/rSUv3ncUlbat7QADhYsqh1uHZuXQpa2THFMZRrZkwrLIxpY21wp7Y+UU7WWxLWQo3BkOlfXLB3Qyhxeyb6FZC8NXQcuJNnJiW9xUCYaPIjb8c+o2+A7vmn0hJUkQyjOmZJ+FpWXauWUpk+ypZyoGKzyLbQIO0Lh+LjkZktZGUv4BfhNM4UBpjVsT5sFvAPALYut2zo7wlJWSlKmvmwpX5lS5MtwUIi2+yzlvW1Kr9+j0ML/zTYkL7vmvHqzuJpOwA+Q8iwkbqO/Tzv6+5o/41hjJH9Fj+OUa3Nean8vn7sGlHjMW/NHc1XSyNHuMVxwiTDfwGGZqu+90Xqff3tZyg3yzysPYzIzUntyMPtW1qS/TWHORgKRd0P9xkyJ20zz1MNE5R0hIDeBsKxYnHOKl6YIsEp7e/V9Cnwc0f5xmqUc5vDyFny/fzx4+0Gdqu14FBz/35MnuUfKIyXVtbXTOgK4DfNH/rEQYiswF/hTSnmlxD2rECFEODATCMVsx7UMeLmkoWXzjvbVaQXQarVnz5w5E9mkSZPSKztwUJV4t+Rwyj30Dp7E6bThcIOarg/Rf0u46TCt+uwh2akcKSMdgFtdtvp3pWnq0ZqOpFQyVV4kqYOoY8qr6VAc1BTeza+xi8pQe/JyfbNO9CVb1UFSMivXC5f1mRx1b8ZdHRdz1q1+mUIZmT6DYO1h/DSni+y0XsW3PdN92wPwQrtpdDx/mpNuTct0rMIc8W7OEx2+4uvUw+BZfX2S48ePy8TExF0l1bFpIlxKuVRKOR4IxLzo6gJmb9YYIcQ6IcSDJTZQdRgwd1KbAm2BzoBNQjx78mkFyMvL23/8+PHqP7ADB0Ww+fI7+OhO0txndumVr0PUUs8t+k9ZoX2cMx5l+7FxYI1/bgKJTlW/mKMycDOlmhfElJH6nkvw0Z2sgogc1DaENBEp97NBPQGAphlH2LC5A7/uvg0OvAmHP2Ba/ADGp71TbBtqaWBYxs9km7zQihzcVLapMDO0Hhz2aEOequJOGN80egI6fgPVeP07cOBAWk5OTom5n8uk3pRS5kkpF0op78bcgR0PNAG+K0s7QogGQojvhBD7hRBGIcSGYuo1y+8UZwkhLgoh3hFCXB32kVJeklLuKogNOID1rF/RrwO707QSFxe3/eDBg7nVf2QHDq4lVR/F3sTH6RU8GWeRWtPhVDuj9VPxkIks1VZTCqPrlUtraJu8j42BvUqvawdkqTzNqUDLQLPMPdwaNYK7G/RAhX3mc3dQTWRf4v287kzLa8sQ49ekaTwY0P0/Pmr4Jj55SXB8Ohz9hFa5m7g/7U2CDOeKbKZX1t+EG07xQ8IaAMK1N0ZSkz179uQCJU7LlNm8RQihAvphti8bBfhgSTRgK82BocA2oEg3XCGED7AWs0fsLZh9Yqdh7mhfsyJCCOEHjARsMvuwN3mAlPLgt/v3y9fzH3febr19W2dLecA6SznkkqW8U+nVQe1KM1luyxAHlYbyKzGqMxyUbzM95w8Ge73C73lmNWe/9ZY6oYXyYVwJspS3KdKq/qkwxLPS7RRKDKNEaRvUZZ+lrLTyUWpiQaGJBbputZSVKVpRaF+bH7aUvRT98sGm6dxreo3fs2fgmhriWI5WRgo+u+CcWNZtv5sl9SawPrg/YK0v7quwRmut+Iz2WzzcKXyZTvG2lJXaVaUtmqtl8TOeaZCmuLYorbF2KK6XQfm/QvGp1p3WI80sdXpugvt/sTwemWj+38NtI3iBsyaJqMA/gbtwUDq26FiV2KJhrWystPI2cGbe7XirUpieshWj1HLCtRX1VmtJoit9HnoWJ2MOgTlxzF3xJPUMB0g3BVmlyr57jtlbtL9cSaoxmDOiI6fzetLCfT6v3jmMX/O/W4W1qlbXKBss1kq6ptlyvavMFMxKzp07BxBbUh2bxxSFEL2FEN8AlzD7tLYGPgDqSil7lrjztSyRUoZLKW8DDhdT51HMllqj850KZmBOGfu8EMKqiyOEcAL+BD6XUpYunipFGlBDHdoTuQcPOm7THdgNWcKLH3Rf0Uc7gzrixkjvqpIGbjO9yT79SDbnldMw3AEAL515k2StH090+LqmQ7EZrdSDSlt6xXz6uE9lsMdr7Esdz+nMQTR0W1r6Tg5qP/p0SC20XujMLOrpNrM582nO67sQa2iPEetzKVftzMKNI+mWt4T3veaiF85cg5S0YhWbcp4CIF0G3hAj+MnJyQCJpa1JstXy6hKwHugGfA7Ul1J2klJ+Wh4nASmlqfRaDAFWSSmVczVzMXdkeyti8KqCNgAAXtZJREFUUwP/A/ZKKafZGoO9yQOklHpVZmYqOTnVf3AHDorhmMo8vBGm2l/DkVQPAZzDnRSW5bzFteN8DmzF2ZjNLVfmMaPuC2TXIm9bTRk6rSr0DPN8GSdVJivipxOX1wIf7dkqjtBBjZJyCJa3ggUBsKw57HzCnEQj9SjseJh/Ml5ke1bxS3wapp2gReohvvT4kqO6LkXWcSYDP2I5pzdvdxcJeKiu8OzZ96vXfqqaOXDgACqVak9p9WyVB3wHzJVSliiQrWSaYO4oX0VKeV4IkZW/bYkitnTghZIaE0I8DOZca25+EXYnDwBwgp3b9u8P69y5s3lJWTGs7V99MZUVpdVQA4UljDKr0qESpoWv36+k/WP13o8qKATxz+JR9HT6hP+FDUOX4nO1ysmG1hZY8QonmCjFb/dRxUJWrzRrKUhxX8NIxRSvRmHxqbS/IsJ6ullpTzR8jaX8vWLAVGlTdGqQ9TFvXQBp0huMMHl0BpTsbFNrUGabq45Mc65Z0CNlM+7GDDa4j2TU35Ztf4+ylJXT9sosVk2U61ELSZyUNlUNFeuechXrTmbfaynfPt9SDrlkLRsJV3q658sDErUBkGnxyFJOD49T7Nt+t6RT6EeYpJrZBw9zqJUn9fAiqlAiH+X56pBA1S6UEqWI89AlcxUfXxyFs8xmtufLHHPqyBsn72HFeR1d9AuBUN5p9NFVP9WAeMv+x5pAq4NG5p8cw37XznzV5DFM+Rc/5Tm2tSs0yLoA+yDa35eLAg4ZuzDSNIVXT6+j9T91OJw0AaZW8YsvCX0acvvD0PwVmsS1QektUBFJ4tatW3OvXLmyprR6pY4pCiGcgbuByPKHUy58KDqVV3L+NoQQ3YEHgA7AXiHEPiFEkSsnpJTfSyk7SCk7OHkG2KM8gPj4+FVbt269/ucBHNQqPg+YhpsxlZ/PdyXKcH2PuGbhjREV5DqSfVSE1hk7iNVFkKStRT1/KQnPiS7VPUBgYkDUA3QKfYf10TNIyWkMSLTkEMIxyL5U4v4Oah/Nsnfw3qW72OR2MzeHXWKG70dscLuV6b6fMTD3R4JN0SSIOtckAFDiYsqkXs4RTrs0xVRC18tfb3YRTcu/a16oeoXfTmxlb/zj9AmdWLkvrDzEb4Xz82DbfaXXLQNr165N0+v120qrV2qnVUqZA3hj9kGtbooaeBMFz0spt0gphZSypZSyTf7fdFsatjd5AEBubu5/61cvTsfo8Al0YD9c1EYxIWIHcdowvkztwNisN9DK69PowiTUZOLj6LRWkOEJ81jhd2tNh1Em+iStplX6Xmj0eJHbteTQW/zI66puNPKdy8Ljqzgcb54KbsY/jOYdVEhw+LxeV3gYUvk69ib2uPbhreBfSdIEX9220PMxbvNOZ7RXJm+4ryqxnUy1J5PDZ3Frwi/MOdqTxlkHiqx336Uv2OXRjWRCAcgS3lzK6oIRLck5drC62pht/p8TX3K9siBNHDt6VAKl+sbZ2j37H1C53erSScbcWS6MF0WPwJYJexxpBY6cOrzVjXO/11gADhwURYomgCfqrOErt28YmfM5X6a2p5V+Q02HVflIiQvpoHXM5ZYXV2MGTbIOstn7ppoOxWYCcy8x5djjLAq8DXzaXFth6wS+UfkxVjxJoqzLohPLiUnvd3WzC2YdwFF6gVvdaoraQVUSlXWSiaff4tQGb9xNabwT9DN5qiIWTgG5wpVcUbp2e7nP3dzabCcGoWXukR60zLC2sqqTE82ApMV8U2fS1SxaBZikFlk2l9KqIXyk+X92LP76yxVrKzcJjn9JzJzOIESsLeudbNW0ngduz0/luhy4gvUoqJRSVnaGw2NgJZcoyIDllr+t3Ejsz/IKQEppbBQZeObBHeqmhxV6mq1F67UrRMdCOSd2dih/W/co+tjDC1kcfvuopVygdw2LsU7BqdR9eeHQftkblnNDAA/R9MoQph5+mqmX+3LSZTj/XJlCYm4zq32Ueuaem8z61wKeUVx3b46ylPe2tZRbK1QISu1j+91w2DphzVUy3C3luXdayukelrLaaCk3Pg5+iZbHcYHgZUxAezGPkel12J1/virP1dpIdehYlXQ6Y/aeNCbWp2UMGBS/Mkqbq7OKz37AWkvZO8VSHq5YjF94Biw60lJWHuO19y3lk4rsk8q0r6sHmrXSTsZsbo/7mYcuTSFN68Uzbb5louLcbXkQXGQaM3N+Z4XqBZaJ50kXAUS6A/nnW54O2qemY/IUzIpfyoeKGB3XstrDYMVAaXDeBZZm9MVfmt2Xvnb+Fvd4b9yBfW0s9TzTLDZsSl12WIy1xv+w4vIYHtOGu3xWM+Pobcw52oNvM57kgwYf4H/ZiXdj3+CCrgG/thmMqZ25/vzbzP9ddV64tzrIJ69m816aC1CD51fj5+D4Z3Q7fp6TavPI898jS9/tqa+sH7/q2ZtQzSHm7+xJdnb2MlsObWu3fRoQArTD7JH6JfBVob/KZgUwSAih+MnhDiAb+LdCLQv7lAcAxKfq/9hwzA571A4c5HPRJYx7O/zF4K4bcdXE82CDlrT3rYpLQPUTYDT/SF1xCq3hSGov6SrzYj13U0rNBlICamngodhP2LQnipfPvcyikDEM7/oPybprM3eNNnxIJj4sEq+SLorW6A50e4f9ubeTKz2K3O6gdvFc1niy8p01s3Bnpe7RUvYoGwaVlieb/M60em/y0IUv+OrQWG5P+pqhqb/xedDHmFTXps6OvTgab0MqrVNLXWBf9bT9mDtcsjip7lTmXQUmbnL+kLe9IgDJMX1/1p0MyEpKSlpZ6s7YONIqpazUbpwQwhVzcgGAOoCnEKLAgny5lDILmAE8DfwlhJgC1APeAj4tZINVLuxxpBUgJSVllW7vv28GDL639MoOHNQgW/16MuvMVvoHP0/PoNeJy/BlT85d1GarqDqG0wAkaINKqemgONJUvgB4mJJLqVkzCIx8cnICNyUt5MfQF5gZ8jRngopPMxtpOsAO9S1kU/Swlppc/NRnWJxhs+OiAzvGSWbRzLiZj13nkCDCuaBuUvpO5SBH7coXUZOIca7LpFOvMjhvMTP9XmaD+4gi62dn1wHA3ZBeJfGUCZWaPOFSrl3b6eYywnUSJilQCckPKYs4eGhgNmBT2q8yZ8SqJAKB+YWeK3gcBURLKZOFEP0xj+Iuwaxj/Qxzx7XC2GunFdiVdWSHiTKm2HXgoGYQ/HvFPB97t99YfFTnWJf1ag3HVH5GZHzHZucR5KjLd0F2AHqcOKdpwsjMr/hIO/AabV5NoiWLu5yepG3S30xotpKdnqXnxTGgQ0Pxi6uaOJnnlc/ryz7q5MC+0MlsJmaMw4iWQ+repKnMXo2iCr0YF4Tcw8KgO4iKzSZLXfxIvb/fFgB2e5fgh1kLMEqzD7JKSHbm3kNqngsGfU6slNKmFYw2d1qFEIGYvVA7AOHAKCnlYSHEM8AOKeXWEhtQIKWMxobhGCnlEcwpYysVe9W0gjnJQFhY2J65Iec61K17raBf6TMZVyhdW4G+5a651s/PuZNrKEnDOlDhlJbpZr1tS7dr6//v7uLbUlKcNrCwLicq2vrx2Ujb2ndQPVh9Xh8AuAKfwS4jjY8tYYHuVXZ1gOOKha5NFXnqlOftdsX1V6mDjQ+w1qg6KcwKCp/3BdRVpPFWSnwaFlqPGmGx4STZYjuLdwqEul9mt/72Wq9jrUk29BXclvAr/63pxvCcmWxUrOH1V5gyKPXElxSeqcoU1sqUrMcUA166POs0rqsUnruBivUATRSrHy7VS2VaUh9CjGdw7bOYP4KL6bAqzu/H10CqcyOaaNbgqvALVr6O1qGzOCwHcsHTsqq8NB753lL+rpjEa30KieA29C66noPyo+wGNKgPL51/k5bG9TgPXMfv/uYOq9J7XGOw+EYn+Vrr7ZXXxU6ZlnKyj+V3OzAOIvKf91AMmJ6uryHOy9xhrXsO+itStW/oY/4fpIqiB/D7N7M5dPFJ5t+mYoAi/sryb+/3j/Xj9X2vrdPwFFZpuG1Nd/vlkwC3MXTLJdQYidfUoc7m38jJyVloa3y2ZsTqhNmK4FYgGqgPFNg5h1CKsb/dYceaVoDMzMy/1q5dWxMWYw4clJ/AntQVu9FQW7O6SVxFEjnSsXqmouz078TMehPoycyaDgUAHxnLh8lD8DQl8YD/YQi2/Rf+uKE/Eeq9eHLlmm0u6gTaqBbzn3FcZYbroLqQEidjDm2T9vBm9BM8dPlj3q/7OfhXwernCnLF1ISd0W/Tpd5EhrYYirMpo6ZDKjdJmmDiNWa5w+XNyzKSkpJszn9sa/fsM+AfoBHwCNY3KDuAWjcvYqeWVwCkpKQs//vvv5NKr+nAgR3h1xmtyCNMHKrpSMpFB+1cvMQlThr61HQo1wULw0bSmM14U/Nm+6Pk+/iYLvOS7xoS1GUbRvcQcRik1uzfW4gmvr+Tixu7TaOK2NOB3WLIhvPzObS8BTnzXNizsj29UlfydP15LPS31xsQwZ7zb/DX3p34uh3kk+R+eJkq0Su1EF1ylvJFQg84/2eVHUNKyZldW3IBm1eX2SoPaAfcIqU0CXGNQCkRs0a11mDP8oB8Du7Zs8dkMplQqazvK042gNF/W1f+q9D1sig5QFlYfRM8+p2ivbss5cJpOKsCe5UDFD5lHClnC+EaRi7OOHudIk7Xwcq66EQjSzlE0Yfps8E6BafSGks5ja+0kxmhSNd6oJWlrNSdqY3Q/LDlsVJSUNRMiotMZbTL86zmKY65tWLsb9bpQB3YztWPIXggmdKHmzLmsinzOavpfLCWBMwfYykPT7GU2+yzlJVSAWX5VANou9fyWGl/tS1/wOyhI+c4pO/MCU/FiVgKD/4EGl0Ow5zeYLvxbuqc111zjBZ+v+DW6G6+71i0f2cBMx6zjtcWjwGHHKB8jFlg/fh8/nx8oD6Gx899QmO5hUDO4EIaedqeTPaaysamUZxwa1qk/rpAKuRVaPm38nfQK82yvcEpIH/xv1um9fVuY74iZcQSy3M5ztZpr5WSpaZHLRKEkw1hd3uA1iQs38JjTaJ44fDnbLzyPq8ofdYqSIEcYPWXh2jptwU2b2FO4u/szzJ3BDb0gWuWLdooDyhgW74s7Nix49yEPCKlNJa8hwVbR1pTKT4Tdz0oYt7EnrFzeYCU0qTRaPYdOFB0xgwHDuwSoeKSqgGhplKTmtgdHViEM+kskO/UdCjXD2odu7PvpbvrV6io2ezUq/xG0zvrb3wMZfmpktypfZYA1VkWGt69Zqu/02GCXPZBlL2OzDkAQEqGpM1mwbkGtJNLOSvasko8yR3+l3jJZz07nIZxwr2ZXS0YLI1UfSSxWV0IctlbeuVysjv9AbKN5pTGY3zuJ0xn0+L+MrFy5Up9cnLyvLLsY2v3bBHwthCinuI5KYTwByYCf5XloPaAPcsDAOLj4+ctX768tooDHdygJKlC8ZE1Px1cVnyJIYkwcoqxNXJQPjZkvISX+iI93L6s0Tj+DhiLWhrokbWk9Mr5BIpT9NF8x3z9VJJl+DXbm3n/j+Tc+uBX69RxNwQhphN8ltec38+34u0r4/if90SeUx/jB/X3zFe/fdUZoLayP+kh6rj+h8BQeuVykGUKYHnidAC0qhwm+A/DUx1Tyl5l488//0zJzMxcUZZ9bO20vgKkAUeAjfnPzQCOYzb7f6MsB7UH7L3TmpOTs3LBggV2YMjmwEHZsItUg2Wgr/yB0bzNSbrXdCjXHWmmUFamv8tQj1dwVtecTF+v0qHByIPJb9m8Tz3VdnKlK6sNzxexVdLc+3cOp9xTq0bobhik5Et9Y8LlEXKFC3dH7GeG/3uYRE25fFY+mYYgnNWpvNxSC1cqlm+pOPZljGNN0gcAuKvj6ef5fil72E5ubi6nT5/Ok1KeKct+tiYXSBZCdAHGAv2BTCAJ+BGYJaXMLWl/e0NS8xKA0pBSXgwJCUlPS0v7f3vnHd5k1f7xz0n3Li0d0LKX7I2AiIogKqIgON5XFFEU9wsKCD9Rce+B4gQVxMFQUWQpgjKULXvv1Tbp3ivJ+f1xUpICbVNImhbO57py5dnP/TTpk+9zn3tEhYaW9v6cGcPqDj4d5TDt5D7dzhg92NDVPh1jKr3OeAFR0N0dSuKscyiZVF7MkSvQMawVE1hgIchioH5y6fapEWml23OWxJkBpDg4PBxbbe50KKniWLbKsX1naFbpEkmOMbENj557f/8CSa2APdQPX0qRl5FuAV+ytuAhFmS/x6wxFVygplIYrPBv7j0MDB1HrGEPCfnqwcDxM4TSZYVob590jEW+yuF3OSzTPj3UIU/EMR4QYKPDPWijf1/MwhvDGXVZOm61T2/p4HCOVB+8YszEn4QiHyhW5SU50giayI2EcYyfY+6kFxXzkKubnGvK5Hh9iDCbwBYn+nj9JWR6RRKaZf8+hWRDQL59n5Lfo5LHj5J3x3t+Wb8nHbeqGEko/R1dfaW9ZOS/nUof93of+3aOsfv5ARBly61Kr2W/N5q97SWyWu2GpFhIF1fSzjSMFtHfcPyHVxlwVekg6B1tuCBemqTex7w/kWMZbWjlt4gVBeNK/eZeCKtWrUIIsbziLUvj9GOHrfDrF7ZXzaaaeFMrwmq1/vL777+PGTp0aMUbazTVAIEVK2e3IKwuNAhZRr9WDxHmf5jcoliMNCHJ3IaVuWNqnIe4pmCRKtPOgNO5Fm4hzJrCbl/nh/ITCrvgbSgi3n89hy2lC1R3YT6nuIwE0dLVZmpcQPNCFes5oMkxMr3K7nZWkymUoazYP4sw/4Ok5bZ167l2FQ1kV9FAlx5z7ty5GYmJid9Udj9n67RGCyEaOcwLIcSDQoj3hRCuvZIqorqHBwCYTKbZ3333XWrFW2o01QOBlerXxtVKh9ofcWfzKxjStD+JWb2Ys+1fZmw6xdT0NXyc/ifp1oaeNvIixuavcmdbISdoUrQdn3I6W51JenETss2xxPptLbVcSCuX8wOb0GWuqiMGaeFp0yOsCLqVJJ/6Fe9Qw0nNbU+z6G+Vd7mGIKVk6dKlxdjDTZ3GWU/rDOAg8IRt/gXg/2zLHhNCjJRSzqjsyT1FTQgPsLHpn3/+KS4qKsLX17firT2MYzjAmVxIOMCZlDU8oTtreY6BttLQr/qBb4YgNEsN3X/iUOrnrm/t02kR9mnH4bFUB6fILb+UPocq96LKHQ1YZF/uOATsODx3vD74ksvwwHto470In2bDof4LXBbbF/d0E9ecyZvjABkG84II8z5Ogm1o3rHclRTQ1SG06FAT+3Rs0rmnHUNCHENNHENC/ugLfVZAlGE/DTq+gkDyXre7+OeMxlWOIQGO7GsBxVYDphgrqQ6hR60NfxBrPcifhhFYq9vz2SXOTYugp3kTceYjjK3zKz62ohXGGPs9Jy+w9D7O/DY5hrcVOFQ3u+drToeHbOpSusPfZltIQJjtXlhCtEmVPQN1L0uoq6Ydy145/g84lsxq41ACOzhH/R/Nz3+b/xX+xdw/72bN30s57TRwUXnV90a75jiObNu2DSnljvMJLXVWunUCVgAIIQzAw8D/SSkvA14BRlf2xJ6mJnhabXVxFy9btqzijTWaaoCoVpG/kgcCh9LY62/ey10J3T6D2L4V76ZxLUJAaEsi/PdUvK0LqW04yN1BdzMprCWd0zYz8KpfWV7Jz/8oHblGTifOsJ1A0rnB92UesD7IVvqTJJpVfABNlZNoUIowynzKw5ZUDUUymA0bvyEm5ndiYxd72hynmDlzZrbRaPzofPZ1VrSGoZoIAHQGIoASv8kKKl1a1sNUIFiri2gFSEpK+nz69Ok6REBTY5DV5B/ocp9ZXOa9jI9zF3PU4qLsAc35EdaKqICqqzsdGfUXE8PaEee1nS9yfqDdjdtZHDeg0sf5RrxDIUE8E9iBV4IbcI3Ph6wXQ/ncMN0NVmtcQRezEm6d8//0sCVVR0ZGF5KM/YmPUyVPh7ividUFI6Xkhx9+KDCbzeelsJ0NDzgJtAJWAwOAvVLKkseYMKh5zcarye+qM2xYu3ZtYV5eHoGBgRVvrdF4kGJ88RbV43bQz+9NVhc9xAlrJ0+boom6kriQJxFYkFWQqFevwSy8KeTtrA2Y8Tvv+32iaMFk1tA7fwER4hj/FN+HMTzYtcZqXIaXLOapfNXs4Y7MKXwS6cJWUdUciznI43HjzrBu3TqklBullOf1Q+GsaP0SeFMI0RclWic6rOsOVO24zwVSg2JakVLK6OjoWbNnzx573333Vd+07GqIp2NYb1lQev6Xmz1jR1UQY2s0VOwTiSUsjQO2/nmOMaaRDuMFV/8FRQ5h2iXtWL0s0GOtfbkxxj7defO5lzffb592bAkbIlPIym5NhK527Hkiu+HnlY2xzRFMNKXeCfsqx/jWoNzSn7Mj2xxKYTnG+Z1wqPvf4Jh6zy6OxyCsBBUUUyT9zitoxd4OWwC3AHDHeRxHUzXc9gOEOuigaUyn0RFVHqok1vlkfOn4UrO3PffhzDJsjt+ZM0tilTD1MfXuGJNdcg9qv/3sY4K97NY1Do5gi5d6gSrn1n6bmnaMn407Zd+myyb78sv2AsJC1HXrMG75X7X2sgK8//776YmJiW+d7/5OSTcp5WvA40CS7f0Dh9URqHqtNYqaEh4AkJyc/OG7776bXvGWGo1nySWCEKpHNEtiUQca+K/2tBkagNDmWKQXDQ2bKt7WBQT4J3K8qBtFUntFLyUKRAhGGrGN/vwj/utpc6qMsIaL8QlMIm1/9X6syszMZOXKlTlWq/W8uyE47W+UUn4tpXxcSvmFlFI6LH9ISjnzfA3wCDUophVASnkqPT19/44dOzxtikZTLgUyhECZ4WkzAMg0N8DfkFnxhhr34+XPVuvNXOP1Ce5v0yGJi/2FrXn/cfN5NNWRbYb+Hq8JXNX4BCVhLqxFUXYDT5tSLrNmzSouLi7+zFFDVpZKDZILIa4TQkwSQnxke+93vif2NFZD+a/qhslkeuWtt97K8LQdGk15xBu2c6qaFFz3N6RTaA2peENNlbDQ8gyNxToGeLk3zjAo8Aj+fiaOF3V363k01ZNAMvCpeWk2F4Q0++PtlwGi+op1KSXvv/9+Zlpa2ucXchynYlqFEHWB+UBXwGR7RQMvCiE2AYMdErOqPZLq502tCLPZvPT333/PNJlM4dHR0Qz9sfT6H4Z4xi5N2VzMMaxnMv1+eO9JSfMO/5B0+B2K2tnXlcSynqin2rmW4Nhy1bHFq2P718A8+/SOM5q+RNtqJ2aG2Wt4WrzApxhifHbQLPA3psS9wC+2ZkYvn9eVaVxFnqkzvwZNYVD4Y+QcG0ZOUfmF3x3j+RxrtBqs9jqXAG0dBqAiCtJp23kkuZnNeeyJzpV0y2hqKjEmoLeavvHXG+gVMJyIzCKOx/kSnKOWp0baW6RC6Rj7Dd3s95OS713YGefIcqgD7hgXC/Ya5dc5VKeMSIOWtmyfM+9d9U7Yz+MY0x2SbW9F7Og8yw+w12596FN7rdl6JyA5StK443SSTg6i63rXpL3c9V3p+W9dEGmxdOlS8vLylkspkyveumyc/Zf+HKgD9JJSxkop20kpY4ErgVjgswsxwhPUpPAAUDVbc3NzX3nvvfdyz7X+TBGr0XiCQksY/t6ejWkVWLkrejAnCi9nbuRDHrVFU5oNuQ+QaYmnTewnLj+2n5+RrgMvJyDkCDtW/AAGn4p30lx0JFjbABAhjpe5TaQHb1FlJSGGnGfCaFyjWUREreHw7vEXZpiNMwWrq3j22WdTEhMTn7vQ4zgrWvsA46WU/zgulFL+DUwArrlQQ6oUUfPCAwBycnK+njFjRk5ubq72rGqqIYLj2X1pEOrZZhhNA34n0ucQv6R+RpHBv+IdNFWGxIt1OY/QOuZzvA15Fe9QiSN36TYMKb3YuGAjuenu7cWuqb6EiUSs0kAhQZ42xe34BZyiVZcnOLxnPJmp3dxyDld4WTdv3kxCQsIeKeX+ircuH2dLXhmB/DLW5QMpF2pIVVMdvakVIaUsjIyM/KDXKx+9lD98vAH1QMneFp61S6MBNdyVbG5OnZC/CXIYD0ipXXq6pAVntw2lvQsBDncYxzavJaWxeqyFXa3ty/c69GJ1DC9oEfM5/8rrWNWyEY2OwIKB531JGhfyRokjqOgBiue8SMvaM9mV9HCp9pWOn6ljSIAjvkX26SaHVNmi+LrziI75g6f8N3P4AfWFu9a15muqMSUlqb68H9o33EJmTEuK8+rQ9KBanl7L7l3NOaOgxKk4aHxYTR9uDP62cFjH71m0QxtXx5ClMFue503YSq/ZSvH1XmXfJjRLfU/BXu4KVCmukhbWZ3pZHe+Zl+21T/sV2kNjum2AZl3HkVcQz9ZDkxmyiLN44Iy6TtNGnr3NmbhCpJ7J2LFjU00m01hXHMtZn+KrqPjVeMeFtvnnUa1cawwlMa01KTyghLS0tPdOzvoow5qji09qqh+B3ikUWsI9dv5ow166mRfwm88oj9mgqQDfWuxOepCO8a/j5YJGFMHB++jS8QEWeI/hsEE3ktAI3F+hwvMEBR0kPu4H9uybhNXqV/EOHmLDhg3s27dvr9ls3uCK45UpWoUQc0teQD8gEjgkhFgrhPhFCLEWOGRbXrMaetfQ8AAAKWW+OSfrVf/vp1hLll22z5MWaTR2EvIuJybgX4JkWsUbuxh/kcXIkFvZ43UF670voSy4GsiWkxPw806jVZ0LS4cICd7L1b2uJj2zI7N8XneRdZqaTG5BPEH+J53a9lScffpwY/v0aS+rlHQ7sZe70t7lwxPXM/dQO+adasCPp+LpnzsLgzS7znAb5XlZS7h8YxHdOg0nPaMjJxOGctvcs49zPl5WdzB69OjUxMTEx1x1vPLCA6LOmD9gewGEolq3lsS41qaGUZ29qRWRkZEx1WvOtIm1bnsk0is8ouIdNJoq4mD2ACxWP7oZ5vOnuL/KzutDHo+F9sFX5PKm/59YhbORTxpPkF8cTULW1dQO2nrewWW1/XZyda++ZGW3ZM26hZjr+1a8k+aix88nlSJzaMUbnoNASy4DjD/SOmsn/tZ8rkr/jcb5B0jximFt0PXsCuxFriGMOuYjTEq9ByvDWeo7ii/83wGqqs26pEvHBwkN3cXyleuRsvre61atWsWRI0e2Sym3uuqY4gJqvNZYglp1kZd9U35nln87i81Syi5VZFKlCQ0NHfHf//73/U8//fT8/js1Gie45q/S839eXf72P9wGPbvfQnFxCJs3fnN6+are9m0cY8UyHerKlLSCBU6XqSnBcfRjS0f7dEkJrfbePzMycCi3NjxEkk+D0yVoNNWTw11O0fjJeNLXP8HBtVNOL3dsnZ5Q1z7tGFOYWAdqR63g8h5D2e3fmdf9fqZQBDF/kPvt1lRfPh8FAgtDu7Rhj1cv5uRMA1QJvBIcy6glxdqng+NWcW3WfG5Kn4WPLCI4OA78akP01RB/M0R0BlF6CHbkbztpXryJ8Vkj2Fd8DR/krgBULLaBIuoHrmG/+RpKmr9u7WDf17HdtON33jEX4Iq/7dP9bLmtvuGHsNzzFC38F/NFym8cLrzGHitezbBarbRt2zZl9+7dPaWUByrewznOayBcCFGja4nU5JjWErKzs2f+/PPPifv3X3AynkbjUiyWqs/Yb+e9gH1+nUjyqd4dYTQKS0E40mqgyNS64o1PIwmM+pfOXYZz5VXXkpQwkFf8FlIoLv4scY0zWGkWM4taQXtZnve003t1tfzMjMNX0Sl3NTOjxnJdy+Nw0x7otxravwSRXc8SrH2Xw1HvNvwecC8HzVfSwudPQBKbBIFeJp65zI+761+Lj1BZW64QrAExm2n0QAdqeR1lWvJyDhdW76JN33zzjTk1NfUXVwpWcL56AEKInsCzQC8gUAiRB6wGXpJSrnWlUW5HVO+4VWeQUlq9vb1HPvzww78sX75cxwhoqg1CWJC4TrgKLHSK/IRd6XdTaD2z5De08V5IT9+veLrWDy47p8a9yOIgLPkR+Mevh0MPOq4hpP5ywhv/Smwtle6dk9OM2B5rCKu3HCEk6WmdWffPfBITBmFu5Rn7NdWPK5o+Qeu4j9iXdC8p3k1LrQsznKSN/3yC/U4QLk5xwtKJQnM+oSTT1/I530Q+wRtxU8o4cvnMy5/CxJBO1DXsoHXoNm6MfRiADHM9iqVrHqh8a+2n4dCbOFB4DbNSf8LqvHTzCHl5eTzzzDNpRqNxnKuP7VR4gK1d6yJgHzAPVQIrBhgKtAAGSCn/cLVx7iKwdRfZ7PvywwO2t6/e4QEl1KlTZ9mMGTOu7d+/fw3wD2suVrqvt0/P29yPjPzmrDryEUca2Zc7lrHa49DpdfhM+/SSG+zTfdRoG4E+iTzQUY0VH931FFssg0jK6gXAyWaZjIroS5q5MbMy5/DOk666Io072dMKWk5St6yjv35HXmJ3Yrq/TECjvwgMOUxmaify8+MAQUjYTlKKWuFtyGPdkbcY8lZHEPp2p7Ez6RV4rkEgZunPT8sTsUrlzjzQNYFe/p/Qy/9jCny9OOHXmBTvWFoUbybTJ4w03wj+iO3Li20mneVNdYan3oW63lt5qnZHjLmdiQrcisHWSvXEr7PI2DWMTQ4q4qRD/aUT9ezTtdLt0x232KfjT4JfyGHa39qT/IzmhI1eAt5VP7KweGgm9Rt9QWry1STnlq7QMXTe2dtPmDAhd9q0aS+kpqa+5WpbnJXrrwALgNtkaZX7ohDiR1RJrBojWqFmhAA4Q1JS0ohRo0Zt2bt3b21/f11IXeN5gv2OcyKjn8uOl18cTV52IwJDjtCw9Ts05B3yiqIptgSDryqZNCf3S5edT1M17H/XSN2b76XhwP8irQYKUltz8tBwko4PJTezFWaHXyfHLG8uknu3xrXMMc1hSNS9XNt5AElp1+DjncmdtaZSLAPYXPhfHu/8JoWGAAD2nVHb/MULOG+AIR2rNBATtLnUcr+ICy/rY/DOo9X1gynIbsiuRUvpObaqkr1KU7fePNp0fIoU49WsWrcEq7VsrbF//36++uqrxLS0tPfcYYuzjxZtgWny3G7Zz23rawySmlvy6kyklCdzcnKmvPLKK+ds76rRVClSEuJ7nOzC8vvKV+qQePH3/H0c2voc0mpgd9JItpycyD7TcDbnD+PNlF0kmWvULUgDWPKiOTF7MYfmLeX44q/Z//UmDu14jtxMPeavcZ5Jtirx+/IHsmL9H3gZ8mkYO5uoer+wMPdVJqUl8WCvD8sUrOebiv7Uu+r9UNE1zN/3O8l57Uqtzzl2Ye0tfH1SaX3TdfgEGtn7249YzZ4RrAtuAV9fFaoTHrmejh0eOb3uTC+rlJLhw4enpaam3i2lG+qB4bynNQNoUsa6prb1NYcakmzlLKmpqW9MmzbtvnvvvbdRkyZlfUwajfsJlNl4exWQXxzj0uNK6cOhbS9QO24p3oY8tic8ARg4WH1ramucJPtof0+boLlISMvuyNINKotpc+eqO++J7GuZt3cVQT6J9K73FI3CFxN79XgOfb2e8xkaMIgirux2C75eiWz/eTVFuXEV7+RGCgrqYDH7Y7YEk51V9kPlnDlzLEePHl1uNpvXucsWZ2NaPwCGA48CP0gpC4QQ/qiY1qnATCnl/9xlpKsJaNNFNppXfkzrnlY1I6a1BG9v7x6dO3deuG7dughxicd7nXn1l15RN8/w6cMQ5HuCuy+vz5cHN2MsULFPO9vYt3HMkE12qATddod9el13+3TDo/bpOonQNvhbBsXcx7yAcXwd+PLpdUuud9FFaDQXCfo+WDX8Z3bp+d6roEGthdzYeiCLfsjFYlEeUi+LfZuStrEAux00YEmL2JZd/kd085m8nbWBZGtzAD50WXl+57nvK/XeSGzgWd/LAcg72I/Zx5ZSMlD/ry3EtSAnlQUfXFGQnLAvXkqZ6i6bnB0IfxpYCMwEcoUQmUCubX6hbX2N4WIKDyjBbDavPXbs2M+ffvppYcVbX1pc2hK+amkZ+wXAObP8XcGOnLvYlXMbjS1b3XJ8jUajOV96r1LvkUHbycutd16CNSJmBQ0v+4Bvc786LVg9QYlgBRg5294BJLDpMkICjgB2wQqw4ZcnrJbivAfcKVjBSdEqpcyXUt4FtAbuRSVm3Qu0llIOk1JeeAPpKqam12k9F0aj8YkXXngh+fjx4542xaNoj4LniAxWqa9ZRa6LaXXER+TSPHAhm320a1Wj0VRPYkLWkZ7a45zrvENOYvB3KBeApHbkKhq0+IBm7Z+lU+8hbCsazPbiwae38ISX1ZHApsuwFqvkK6vVm0DfRK5pczuPBfcjQGRwYvdCUk5sWJ9qOv5NBYe6YC7Jjlj+bbvI+j+VHx5woHnNCg8owdfX95ouXbr8uGbNmloGQw10GWtqNItem8V19R7ko50mREHI6eW/OYQtNnMoNe3YoeZoQ/t0Z4dE3JLOSAFkclfhJLoFfslLxgReeso93lyNRqO5EFa+8Q496z7H9uRRFBzqi9F0Hf7+CVzZ9m5C4ldh2vI4C9Om0DD6Rzo2fo5aQXsgsB74hED8rdBqHPh4rtnl6xPt0/2PrKH9Tdewf9U0sooa0v7KO/ELsLcvHH9wH7M+uyErKeFwMyml6RyHcynVu0KtG6mJIQDOUFRU9GdMTMy8d999956xY8fqGliaKuVg5i1cG/cEnWpPZcvJiRXvcC6kpFfoO3hTSL61Fj6Go0SJw7QWfyAN3szPnEqB1IJVo9FUT7aankBioFXkTKJ6TiE3tyF+fiZ8fFR/6qA66+hbbyD1ay9i36mR/LnjB279oHpUzSgRrAIzA5J+pcV1D5B8+DaOnhgOCFb9fIhmt15HXZ8tfJL8F8t+HVeck2W6ryoEK1yiorWkjevFislkeuKtt966pm/fvs06dOjgaXM0lxBF1lDWm57m8pjX2X5qNBYZUOljGLByYy3VSCXLXAejaEgKjZhvfYHdpvspksGuNluj0WhcwntPAviwxTiG1I1jCAw4RpMmUwlMisb472iCYjbRaOiNBOZbWbjpb0yZPbnvC09brSgRrD4il4fiuhHYei+mw3eybf0XhNTaTrted+EfdpBiGcj01N/4Y8M2TIk7FmZnZ/9YVTZekqIVLm7RKqUsFELcPHTo0DXbt2+PDAz0TH03zaVJdlF9vEQhzud5lsYqvFid9SQN/P7m06R1p8MDAKIuvWgmjUZTg8nLb8COnW+droSSm9iDOX+fwGwJ5Hzvke6mtv9OgmrtJiPxSvb8+Q3e4cl06D2Ugrx4frX+H8eKenIosZCNfw1PNiYdGVaVtl2aolVcvOEBJUgp90ZGRj4/YsSIV2bPnh12qZfB0lQN496EFW8mk2+uTYG33+ms2X7L1PuYd4EbIMZhIOn6peo9NgkS66jpvXViaFlwnLVXFlIs/FhzRZVdgkaj0TjNWaXFbE0H2m+3L5swNYWdoWFI6WOL4w8GL3s5wH8/Uu9TH3WzsWfw4RP26Z77j3B7w0Uk7XyI2MTLybj+SUI7Tyfx6lUMbPgfiqxBzD3xDQ+/Ekdubi6dOnVKTU05cZ2UMq8qbXZKtAohngOmSykTzrGuDvCAlPJCOqFVORezp7WEtLS0j1euXNnn008/HfDwww/rMuyaKiG1oBWhvifxNWRhsTiXTCCwMNZwAyI9lxX+dxFrOUptSyKtCtezzb+3my3WaDQa1+EoWF/+YhMDevfAYvVnZ+IjBPkmEB2yHr+AJF7P2kaqtZHnDAXAyq1+44m75x0AYmKWUpzSjPAr3gfgjqZ92JdxO7+d+JxiawhSSoYNG5aZkpIyqbi4eGtVW+usp/V5YClwlmgF6trW1xjRerHHtJYgpZRCiGGTJ0/e2rlz5+bdunXztEmaS4CU/NYARPrvxlTcvYKtFf7k0MawDMzQMHcHqYY4Pg5/g21+V7rTVI1GozlvztXAwVGwjnkPWrb+kOSsbhxJv5nWdT4hPa8V4YGqhEq+Q0KpJ7ysQT4JDAwZS0Tj+ZgLQ/H2yyKoxSKwtbottgaw/OQH7Ei7HxCMexOmTPmgYO3atUtTU1M/rVqLFc6KVkHZ5S/jgfQy1lVbLgXRCqrGrhDi+iFDhqzfvHlzVHR0tKdN0lzk5JrrUGAO5/KY1zjgcxsH0m/DIst39OcTxhbrQAJ8k1jrewupXnX5OWxEFVms0Wg07iE44AipWV3YevJptp58mrphK6hb6w/m5H1MnowAql6wAtQLW0b/pnci8sLZu2ghQVGbadjzaXL33ExAk9/ZnXMH/yQ9R2ZRY0CFfv3zzz+8+uqrR00m071Vb7GizDqtQojhqNatAFcBW4CsMzbzB9oCv0sph7jLSFfj276LjFpSfp3WhLiaWae1LIKCgq5v0aLFd2vXrq316hulBcQLz3nIKM1Fy8npPYkPXAvA3zmPsSDjQwDeHG/fJv6kfbrLJmhg3c6YwrtoIHcC8FjgDo57tWHBwCozW6PRaFzC8y9CpM9+Hqt/GevX/kxi4kDi4+fQpdt/+bfgLr7PmonEwLtjzt7XmRa8lW3T++Lz6t3XkMU9WS9Tp+M7ZG+9l/Q1TxN14+P4NV3Ot0HP8E3wJNZ39Sm1b2YoHDt2jB49ehgTExO7SSk91sGovHSkPCDV9hJApsN8yesI8CbwoHvNdD0XY0es8sjNzV16/Pjx1++5557Myc+W/no/X2MCOzQ1hZTClqen433Kf0As4ZihHT/6qJor671vJl3EusU2jUajcSclv6mNA5ZTVFib3NyG3HhjXbpd/h9W5j3Jd1mzkGXIL3cJVj9DJldEvM6Tcc2o3XImpgXTKM6sT71RnUi8LIlHIzcwM+SFcwrWnJwc+vfvn2YymQZ5UrBCOeEBUsp5wDwAIcRXwEtSysNlbV+TuFRiWs8kNTX1rZUrV3Z4/fXXB73w3MQAR7H6/Iva46pxHbuy/sNloT/g75VFpPchp/cbXjyOX30eZ5r/B260TqPRaNyPnyETf/9k+vZrT15ePJvyh7Eo5/XT68/lZXXkggWrlHz62g6ui/qKjuHTMRT6YtzxKHkp7YmJ/43QDjNJ/eM1Hhn+GGbhy6YzxpYzQ8FqtTJ48OAMo9E41mw2ryvfYvdz3m1chRC1gAbAHilloUutcjM+HbrIiN/L9/6YYi6u8IAShBA+0dHR/3z22WcdBw0a5HWml1ULV42rODC7K8EynTryEKOzsijE3tb1k4fUu2Ppq0ZHYOaJjvwTOIDPIl9m3eVVbLBGo9G4kqIMSPwNDL4QfwsI99fanP4AgKRR1A/0qPcMgWEHyMtsxpF9T2AxB9Os/bMEBJ0ko6gBh3Ou57eET5n4atnHGzNmTPZ33303w2g0PlH2VlWHsyWvXgD8pJQTbPN9gF+AQCBJCHGdlHKX+8x0PZeipxVASlkshLhu1KhRm+Pi4hpB11LrtcdV4yr8ZS5eFHNCXIbAWuH2rQvWUWAIIt58sAqs02g0GjfjGw4N7qiy001/AGLCVnN5k3FEhWwk8cB97Fj+A2l5bWjc+k1ad3uczamPsv7kU2QWV1xq6+OPPy787rvv/jGZTKPdb71zOCv77wL2Osy/A6wBrrAtf83FdrmdSy2m1REpZbrJZOozaNAg44h7jp61Xse4alzBIUMnDhs68XjgHgoIK3fbu09+zhenetCmYC3HfZpXkYUajUZzcfDVqAJ6NHuCgZ16IzKiWT9/B3vXTCOzqBEdr7ydZu2eY8mpz/g9cWopwVqWl3Xx4sXWyZMn77fFsVbsdaginC15VRc4DCCEqAe0B0ZJKTcIId4FvnKTfW5BcvF3xKoIKeVRb2/vgf369VuyYcOGyPc/rOVpkzQXGSZDQ3qaf3Bq24eOv8P3YaOZUvs9N1ul0Wg0FxlWC0O6tSY04DB/7PgRw4ZbEaKY6Mazadj5eby9c1i/bCVb43uU2q0swbp161ZGjBhxMjk5uY+UsqAKrsBpnBWt2XDaVdIHSJdSbrDNF6DCBGoOl4A31RnMZvPGkJCQB/v16zdt9erVEYEBAafXvUjFGYkaTVnEJxWxzvA1x+lJYEERaRG+CIcv1Ol/v2hoeBQKRBCN5BbMtUxsaq5rCWtcg2PMNIBRf7U0FyFfjz/KPZ1Unnzr8G/Jvnwr9RrNwC8gkaQj/2H/pre45peYUvuU9ft+5MgRbrrpJqPJZLpWSpniZtMrjbP+xpXABCHEAGAsKp61hObACVcb5m4u5fAAR7Kzs386cuTIc7fcckuG2WIpte4S+jNoXEyQJQerMNBTzmGGJZT21qXlbj+xyTRiihJYuq0t/DsWUjdWkaUajUZTc5n6OGQVNuGrTafY9PccAoMPUrf+XBIPDWP1j0fZueZrpwVrcnIy1157bUpSUtIAKWW1TC5wVrSOAQqB2UAG8IzDunuAVa41y72UhAeU97qUSE1N/Wjr1q2fjBgxIst6RjUJLVw150OGTwRdrzjC9HqPY8WbJNG03IfBncGduan9v3wf8yCcnA8bH6k6YzUajaYGMvVx+3Ttg3VJPHE7q37bxj/z93Jwy6sU5sXR/7fS+5QlWHNycujTp0+a0WgcZjabN7vN6AvkvEtenT6AEKFAgZSyyDUmuR+vTl1k0MryS15lh16cJa/KQgghoqOjZ9xzzz23vvXWW8GetkdzkbC0G0RfyaPr3jm9aEM3++qNtv+wy/bZFkjJC8cf4o7iv2HAzqqzU6OpJrR1+NrvaOM5OzTVm9a7S8/valX5Y5Tcd62FBZx6dBB+uzbcm5aWNvPCrXMfF+xTlFJm1STBWoIODyiNlFKaTKYRX3/99YoXXnghz9P2aC4SvAPB6vztYeyppxmS8gU0f8yNRmk01ZSMnYxNeIr+GXOIMJsq3l5zSXKmYD0fSgSrLCoiacwdBEXX+a66C1YoJxFLCDEXmCilPGSbLhcp5e0utczNXIrCtCKklFYhxJCPP/54UWBg4JXjxo0LqHgvjaYcYvrAgY/w4U2KOfvr1HWT3dsKcFXmIj6PncgjzR6qQiM1murBtr9GMjxvPQBFwhfa51dJQXpNzeFcgrWyXtbTgtVsJmP8fy1+GaappuW/jL5g46qA8v4booCSJrTRtvnyXjUGHdNaNlJKs8lkuuntt9/e8OGHH1arUheaGkjzx8CcS3ffiqvi1SpOJro4AaNvfBUYptFUM3KO0N4mWAH+CL1VC1ZNhZxPWACAtFjgmbuL5c6N7yRvXjvapUa5kQuOaa2JGDp3kX5/lx/TWhBwacW0nokQwi86OnrFxIkTO40ePdrf0/ZoajD/PgXH5/HWzk3kWlTNodRI++pl/cAgLSzd2Zz6vgKuXQFB9c95KEcvQ1NbbmtkaultvhzhSuM1mirCUghHZqlpv9oQNwAMPuXvo7noaeaQwz/o59Lr3hp7fsc0m83cfvvtmX///fd0o9F4nkfxDDX6MU4I0UYI8a8Q4oAQYoEQIqTivRQ6prV8pJSFJpOpz6uvvrr21Vdf1TGumvOn1QTwDmJ43DX4iNxzbhJTfIr6RYd5NObtMgXrWUhJnHUvQaRyreFDgql2JQU1Gufx8oOmI9Wr3iAtWDVuEaxFRUUMHDgwY82aNR/WNMEK5ce0VqrmjJTy4ws3p9J8CkySUi4WQrwJjAeedWbHSzkEwFmklIVCiP5Tpkz5OTc396qXX345SAit6DWVxD8Krl5M9ILG1PXbzLGC3mdtkuhbn6XhQxl3cjx0vk4lcJWDj7WIxwofpp/5S/BTy26X43i7+A+glxsuQqPRaKoOdwjWgoICbrjhhoydO3e+npyc/MZ5G+dBygwPEEJUpteslFJ6OXVCIZoC44DuQBtgtZTy6nNs1wr4EOiBqg07HXhBSmmxrY8B/pVSxtnmWwDzpZQVRniIzl2k9/rywwPMPpd2eIAjQgiv6OjoObfffvt1U6ZMCTEYtOLXVBJphSUdwMuf3nHzSPRvwDV/2len14Lm1rW8Yu4JwO1xBznl0wSAv3uWPtTNv4KfzGVejr0ymwUvvLDwWIOFrA4ZwLZ27r4gjUajqVruc0gNqGwYVFZWFv3790/fv3//c6mpqVNda1nVUab6kFIaKvFySrDaaA3cCOy3vc5CCFEL+AOVM3ULqqvoU8ALDpvFAycd5o8D9ZyyoILQAB0eUBoppcVkMt0+d+7cb2677bbMoqIaV+FM42mEAXr/AsFNWbG9MZ/vG0CUOHB69RWW73nO3Of0/NCsD8o9XBEBfO/7PNu8+jDH9xkW+zzC/Q3/ZHXIALddgkaj0XiK+yrOZS2TpKQkunfvnrZnz57HarJgBQ8kYgkhDFJKq236B6D2mZ5WIcRE1FB/Aylllm3ZeGAyECulzBJCdAGmSim729YHACYpZYVxraJLFyk2lu9plQbtaT0X0dHR/9e8efOxS5YsqRUS4nQIsUajsJphtorVk8BW8818W/gpzwZ0IMxg4hfDWKL8dtO+YDVPxC5nr1/Xc3paz8WxBqXntbdVo9FcDJwpWCvjZT1w4AD9+vVLMRqNd+Tn569wrWVVT6XGeYUQ8UKIPkKIG898OXuMEsFaATcAv5UIVhuzgQDgKtv8SUp7VutT2vNavh3a03pemEymV3ft2vVEjx490oxGo6fN0dQ0DN70bn+MHEMIAujovYC3AusSZlCF1NcY7mJC9M9sCujLe8b+9M+ZBdZiz9qs0Wg0HuJCBOvGjRu5+uqrE0+dOnXtxSBYwUlPqy0rfy5wXcki2/vpnSsZIlBy3LI8rSbgYynl5DOW5wKTpZRv2eb/Bl5xSMQqllI+U8a5HgQetM36AxXVIE2RUl5fyUu6ZAgICOgbHR393eLFi6Nat27taXM0NQ1phb3vwpZxpxeliDhuq3sMq/Bi2PeF9Gwyhstip3MipC7z6t/GhshubJc3kOelYllP2Mq5nvmMWVVjR46JEi332KcXDHRu/3pnPGKf0OVpNZqLkoc+Kz3/6Sj3n/Onn34yP/zwwydMJtM1Uspj7j9j1eCsaJ0KXAM8AKwBBgPpwDCgD/AfKeXGSp+8bNFaDIyTUr5/xvKTwNdSyv+zzbcDZgLBwD7gLillZmXt0JwfQoiWMTExv8+cObNu//79dXaWpvIUJDNv8VsMKPgEi/BheeCdHPJpR/TSW8grqkPt4H8Z0qnz6c3faTCZ9xs8f3r+RLwWrRqNpvpS1YJVSslrr72WP2XKlB0mk6m/lDLDvWesWsoseXUGNwKTgJJ2HQk2kbpKCPEOqhqAq9u4nuu3R1Dau7sd6Oji82qcREq5RwjR6e67717x/PPPN3v00Uf9PG2TpobhH8WXgW8y2/8ZbiicRufihfTJm01g98dJzuxOgI+9/3qWdwj/hPcp52AajUZTfahqwVpcXMyIESOy/vjjjyUmk+luKeVFF1vlrKc1F7heSrlaCJENDJVS/mZbdy3wo5QyvNInLz884CMp5QtnLM9Blb16q7Ln0rgPIYR/dHT0T4MHD+41derUEG9vZ5+FNJqziUsq5obkn+mSuZbo9ALmho7mhHcz/r7i/IPNPeWN1Wg0mqogNTWVAQMGpB8+fPi95OTkl+VF2u7U2SHdE0Bt2/QB4CaHdZdTcXxoZdkLXOa4QAhRDwiyrdNUI6SUBSaTacD8+fM/6N27d3paWpqnTdLUYMwGH36NuY3nm7/LO5Efc8KnOQjBFf942jKNRqOpfuzcuZPOnTun7Ny5816TyfTSxSpYwXnRugzoa5t+D3hUCPGPEOJP4CXgaxfbtQTof0Zb1juAfGCli8+lcQFSSmk0Gift3Lnzvk6dOqXs2rXL0yZpaijGaNcf86K9g2s0mkuan376ydy3b99jx44duzInJ2eBp+1xN86GBwQCgVLKFNv8YGAoqgTVMuAzJ0tZlRyrpETWU0AoUJJZsVhKmWdrLrAb2Am8ATQG3gXel1JOcvLaNB7ClqC19JNPPokbPHhwpatKaDQajUajKRur1cqzzz6bO3369G0mk2nAxZZwVRYVilYhhB9KoG6QUh4od2NnTihEQ+BIGasbSSmP2rZrBUyldBvXySVtXDXVGyFEeHR09KJhw4a1e/PNN4O9vLR21Wg0Go3mQklPT2fw4MHpe/bs+c5kMv3vUtJFznpa81GJWHpoXuM0QghDVFTUa02aNHlgwYIFtaKiojxtkkaj0Wg0NZYtW7YwaNCglLS0tIezs7N/8LQ9VY2zMa07gObuNERz8SGltJpMpqe3bds2rFOnTqb169dXvJNGo9FoNJqzmD59etH1119/+Pjx4z0vRcEKzntarwBmAGOApVJKs5vt0lxkCCEaRkdHL3n66acbjhkzxl8I3StXU3WcT8krXSZLo9FUB/Ly8hg5cmTmihUr1hiNxjuklLmetslTOCtak4FAVPtTieqGVWpHKaUbcn41FxNCCL+YmJjP27dvf/OcOXPCw8PDPW2S5hJBi1aNRlMT2bNnD4MGDUpNSUmZnJaW9tHFXM7KGZwVrZOp4J59ZiMAjaYsQkNDb69Vq9bUefPmRXXr1s3T5mguERxFqBatGo2mujNjxozip59+OiEtLe3m4uLi7Z62pzrglGjVaFyNEKJRdHT0oqeeeqrh2LFjAwwGZ8OrNZqyCcuyT9c/rt6tZ3y1drWqOns0Go2msuTk5HD//fdnrly5crXRaPyPlDLH0zZVF7RS0HgEKeURk8nU4d1335151VVXpSclJXnaJI1Go9FoPMrmzZtp165dyrJly8YbjcabtWAtjbPhARupODxAj/Nqzgt/f//+ERERM6ZNmxY9YMAA/SCluSBKvK0lnlakZETKm/TIXsa6kL6MuWocGHTdYI1GU32wWq28/vrreVOmTDlmMplullIe9LRN1RFnResMzhatEajC//nAcinlfS63TnPJIISIiomJ+enmm29uN2XKlNCAgABPm6SpYdQ7aZ8+GQ+1CtN48ODnPLPrFULMDs6Kmw9BcOOqN1Cj0WjOQUJCAkOGDEk7fPjw9yaT6UkpZZGnbaquXFBMqxAiGFgAfCelnO4yqzSXJEIIERkZOSY8PHzi3Llza3fq1MnTJmlqECWitWXONm7OnsZjBz4qtT7ZrzZRbZ6DFo97wDqNRqM5m++//9785JNPmjIyMobn5+f/4Wl7qjsXnIglhBgATJVSNnKNSZpLHSFEi+jo6PkPP/xwg0mTJgV6e3t72iRNDaH/3q38vLUnAdZ8AGY2uofJbSdTqyidY0ENSPWL9LCFGk01w1oMBh9PW3Fu0rdCYRrE9vG0JS4nPT2dESNGZKxbt26N0Wi8W0qZ4WmbagKuEK13AR9JKcNdYpFGAwghfKKjo1+NjY2978cff4xo2rSpp03SVHNi85NYuPImgs05PNz1E/5c3gd6L4D4gZ42TVPdsRRCyj+Qugmy94M5F/xjIaIjNLiz+ok6KeFCGrRICQlLYPdrkLIWmo6Czh+UHetttUDWHihKV9v7hEKTB9wXG261wMHPYNOjav4/FhAXT7rDsmXL5H333ZecmZk5Oisr63tP21OTcMqFJYS48RyLfYGWqC5Zf7rSKI1GSlkMjPP29p7bq1eveePHj48dPXq0ny6NpTknxVn8ufwaJILbr5hLq8zdavmqm+GWYxBU37P2aaonBSmwZSyc+EEJ1aBGEHoZ+IRA2kbY9x4kLIYrqomukFbY+bISmzfthaAGldu/OBsOToPDX0LmLogfDB3fhq1PQ2gLaPGE/Tz5iZC1V4nb43MgzxZ/ExAH+acgYzvUHQB1rjtb1GftgxM/Qd4JCG6ijp13CgpM6m8b1gqsRcqTmrkHCpLAUgDSAvkJ6iUt6litJtgFq6UQijOV6JZmQIB3kBLRNaDLYnZ2Nk888UTWkiVLdhuNxiFSygRP21TTcDYRy1rGqmLgF+AxKaXJlYZpNCUIIQJiYmLeiYuLu2POnDna66o5m/UPcjJhMZ2v30z7jG0s+esGlsdcy+wGd/Jl4xE14gdNU0WkbYFD06AoA0wrweAHrSdC3EAIiC297eqhcOJH6PoxRF8NYS3t66SEwmTwi3Lt9ys/CYx/Kq+mdxDkHoWcI0oYpqyDzJ1qu6groe71Skx6BYJvOBQkK1uir4LiLLDkqeMVpYHwhiMz1b4N74Zmo5R4BNj9BmybBAF11XyBEayFajq8LdQbCvWHgn8M+EYo4bzjOdv69lDvVvCPVvudWqQEf1ADCGmmhG/eSfCLhIB4dV15xwGhxGxYa3VerwAlTgPqQGA9JZzXDAUvf8Cg7CkRsueixzfQ6C7XfQ4uZvny5XLEiBGp2dnZkzIyMj6/1DtbnS/OitZzPc4VACb9h9dUFd7e3pdHRkbOefrpp2NGjx7tr72umtMsv5bV1iKu7bOcrUs6sDO8DXdcMQeE0J2sLmUsRZD0B5z8CdI2g/BS77U6qQoSER2h8X1ni9XT+xfAtmdg3wfKs9fgv9B0JOQchUPTVUhBSHOI6ALhbSCwvhJZda5THkVnMeeCaY0aEj/5M3j5gU+4Wh7cUHmArcVKBDYbBcn/wNFvlUgMjFN2FmeqfazFkLoOvEOUDX6RSmgWpdnFqk9o6fNLKxz/QR0PCX7R6u8T2gx8a53bZqsFsg/A3ndVyEBhijpXdG9o8B+I6mUX85ZCMPja54uzAQE+weX/XUyrIHO3ui4vPyVsfcKUuDV4qweHg5/CoS+g1UTo8Krzf/MqIjs7m8cffzxz6dKlu41G4+1SypMV76UpC2dFa2/g33MVuRVCBAGdpZSr3GCfRlMKIYR/TEzMO7GxsXd+9913Ea1a6fZGGiBjFyzrCS3+B6bVkHMYun2mxMNFFAt3ySIlJC1Twiy2n/IqnoviLCVS07crcZq8SgmkqF7qZc6BBndA7Z6V845ai9VxN49WMa/eQVD3Jmg0TJ0nfZsabs8/pYRm14+h2cMVX9OpX5UgTl6lzhF1BbQcD3X6K5F2vhRl1pgh8wsmaTms6AuB8dBoONTuARGd1YOIlOrz8Y+qfCiFC1i0aJH1oYceSs3Ozp6UmZk5TTv5LhxnRasF6CGl3HCOdZ2BDVJKXa1bU2X4+Ph0ioiI+P6+++6Le/7554P8/f09bZKmqslPgo2PqOHG9i/DgU/VkG/Pr2HDQ3B8rhp2bHQPtBgNATGetlhzPljNsOFBODwDkGpIuY1taLreUPDyhaOz4fhsSPxdib/QyyCikxKBcTeX7UmtLFKCORsM/uq851o/v47y+l32v7KPk2+EjQ/ByV+g3hCofxvEXqs8lZrKk58E+6aoh4DM3YC0hRiYVWyudxD031g6vMONJCUlMXLkyPRNmzZtMhqN90gpdctHF1GZmNbuZYjWq4CFUspKjIVoNBeOEMI7MjJyfFhY2Jgvv/yy9lVXXeVpkzRVyZ53YPuzENMHEpeqH6noq6DHDLU+a58a8jz4OVgLoPcvULu7R02u8eQcVcO8PsHgHWz3YkurGio2+KnPoSARsg+qhwhpUcPUQY3Ug8OZQ9NnIqWK2zT+qeIhk/5QwqP3fHWMdfdC6nq1ba2OKsv/1AIl/OreqERgZYbmXYGUkLwaDn0Jx75XAqlWO7XOtAZS/lZ/i/wEdU0Z29UDVc9v9XfS1RTnqJja9G1qPuZqWP8ApG1Scb21L4erF1f8PTwPrFYr06ZNK5o8eXJKZmbmw3l5eQtcfpJLnDJFqy0k4Grb7GRgOnBmLIY/MADIlVL2dI+JGk35CCEaxsbGfte7d+9WH374YVh0dLSnTdJUBelbYWlX6PapiqfbOhEQSgg0vNO+nTkX1g5Xwrb7DCVqLoVhU1eRcxRSN4BxuRJlWJVIjegKVy9ScYf/jrZnl5dCqDhSabYvajlWZa3nHAJznjqe1awyy7P2KMGatU8l/YS3g1odoNlDpbuYSamG6bdNUvON7ob4m931FyifnMOwrJcS1uFtoc3zUH+IurZNjyoPcXBT5UX1j1Ge4pLkJW/d+a9KsBSquNt9U1TMcPMnoMPrgFUlsbngfrB9+3buvffetISEhF+MRuMT5wqn1Fw45YnWccB422wEkAWYz9isCNgLjJNS/usuIzWaihBCiMDAwCEhISFTJkyYEPnYY4/56aYEFzHSCsl/w+rBKn7vziIwroC/blJe1Zbjof2r9jqSVrMqbbTvA2hyH3T7/OKPdS3OUt5P/1iVrLP/Y/U3iukDzR9RsZ6ZuyH3mPrRjuiqhlFNq9QDQdYeyNihxKHBVyUbNR5hixW0wpZxkHNQTTd5AJo/qrLcj3ytRGZkN1vSjFAPDjlHwPgXbB0PlnyVKOQdpD4H4a0SfsJaKVFXd4CKS6wJDxe734CtE9T0nWb1/TvwqRJI1kLo/jXU7e9ZGzUKaVWf1Z637MuEN0q8BkFwI6h7A7QY43Q4UUZGBuPHj89asGDBidTU1GHFxcVb3WK7BnA+POAIMEhKuc39Jmk0548QIjAqKuqV8PDwu7/44ovIK6+80tMmXbxk7FKlg0JbKiHjG6GSHQw+gMF9MaRWM/x1o0rMAXXOmw8r8ZO5W3lfrcWqi07vn20lc2wkLoOVN0GHN+Cy0e6xrzqQ/DesHKjifUENo6dvUQlIKf8oEWq1tTc3+AJS/c2EQXlGw1qrzzWslRK5kV3PrsVZmAqJvylvaHgb523LN6qQgcC6LrlUj5K1H1bdoob8278GUT1h3X2qFFazR1RioKviaTWuocRLn3tcPRQVZarvvTlHefh3vaK2G5xU7j3MarUyY8aM4kmTJqXl5uY+k5WV9aVOtHI/F9wRS6OpjgghmsbExMzs2rVryw8++KBWo0a6y7BLKSlyvuP5sreJ6ALXrVWlac5F+lYljCqbJW21wMIWani53hAlwvITof0r6n3/VHXu7AMqAavd5NL7734Ltj8DPWapTPKLCUshHP0Oto5TdTw7vw/GlXByvhoG7TFD/d2zDynPZngbVRfTWgw7Jqvkpbo36WFrZ9n+POx8UT2w+YQor3X8YFW5wj/K09ZpnMVaDCcXqDq2p35VZcyu+6fMxLg1a9bw0EMPpaakpPxiNBqflFJmVrHFlyxOi1YhhACuAJqjYllLIaX82LWmaTQXjq+vb7+IiIhPhgwZEv3SSy+FREREeNqkqiH7oC2LuoV9GDw/USXPuCJJJXM3LGptmxFQVjXUm/YqG8x5ytOXfUh5Rv1qw2Kbd675YxDSAoozVPxinRtKt4csSIHEJWq5X6QSzIUpysubsV2JsSMz1bX511UePO8g5QW8bDR0fKu0TVKqDkD7PlCdjuoNvvC/hyexmlXcZMIiVf7HWqTacnZ4XYtPd2M1w5FZkL1P1TaNukIl+mhqBjlHVY3Xw1+omOq6A2zx0YPP2aJ23759PProo2m7du3amZSU9KCUcl/VG31p42x4QAywAtW2VaJ+pcDhl0qXvNJUV4QQhpCQkHuDgoJeHj16dK3//e9//hd9iazvzogFDG+nBF4JgfGqkHi7l1T8VkmRcmsx7Htfda6pNxi8A8s+x9734N8n1XTDu1RHoZzDkLxGxU76hEFQQ1UiKGu/SsbxDlLxjSXUv8Oeae4TqobnvANVvGNArEq+yTkK6f+q2LOSguKRXaHhf1ViS/LfSrQWpqptAuOVpyS2r4qzPNc1SKsql3XsezUMWJPF3d//VddRb6iq7xl/i/byaTTnIvcYnPxVPWRk7FAd0QLrQZOR6lVGyIrJZGLChAmZixcvTkxJSXnQbDavrmLLNTacFa3fAI2A24ETwOWAERgG3AMMkFIecqOdGs0FI4QIqF279tP+/v6P/N///V/Y/fff7+vre45ai9WdvFMqizt5DfhF2Fo9nlBtFIPqK0GWslZ5QwuT7ftF9wHTitLHqt1DeUAtBeo42Lyy1iLwDYNmj6lhZGmBOv1U/UvHBKa8k6rg+omf1HxArErWiR+kivwXpaouNmFtlAfKP1YJ5Nzj6gciML60PbnH1H7mHFV7MXu/KtreZKT6cbEUAFKJ4mPfq/mwVtBwmPKOBDcqOxzBkYQlysOSsBiGJNuuvYayqLX6rDu9d3HH6Wo0lSU/UXUOKymflnNYjfKEt4PgJiq8KLbvOb2qAKmpqbz22ms533zzTUZOTs743Nzc2Tpu1bM4K1pPAP8DfkZVEDhds1UIMQm4Ukqp0yM1NQIhRHhUVNREPz+/ERMnTgwfOXKkT7USr3knlagKaapiPk/8qESopQDyTqh6g/6xqiZlcZYSeIH1lEDNPaFEZWCc8nQWJKuh9OJ0WxtFL3UcS4E6l2+EKr5fu7sSiFaz6mdu8FPZz4emq2QenxA1fCa81bEjuqhh/6IMJXoz96jhfUd6/6y8fu7CUqSup4wfnDJJWQ+/d1eCud1L0Phet5jnVqRUnqLj82D/B+p7cP0mlXGv0VyqSAkZ21Ro0KlfVbtbv0g1ChTWWt23onpVeM9ISUnhtddey/n2228z8vPzX8zKypohpSyuoqvQlIOzojUbuFFKuVoIkQEMk1IutK3rA/yimwtoahqO4nXChAnhI0eO9PHzu4DWia5i+bXKk1iCV6ASkl4BKmkmqrdNWPqUfQxXYbWoEj5eAbbyRwch96gq7p5zRAnj8Lbq3ZytvMA5B1XrxK6fqNJHnqYgGUx/qXjPtM1K9EdfDX3+qLzg9RSWQuWFTvtXDWkmLlWfQ1ADaPoQtHi8ZnuLNZoLId8Ih7+Ew1+pBMyAOIgbAHG3KE/qubqXnQNHsZqbm/tCTk7ODCkdiwxrPI2zonU78LKUcq4Q4m/guJTyP7Z17wG3SimrvrGvRuMChBBhUVFRE318fO575JFHgh999NGA8PBw95zMUqC8mOXVn8zco3pp5yeo+VtNOkaxPPIT1TC/d7DyOhdnK0EvvNWw+YGpyiNbu6eqHVrnOoi5tnrWAC0wqeHMjO3qxzf7IBRn2j3jBj/7NcTdpIrUV8fr0GiqgqwDsPt1ODpLhTE1Gq5ChcLbVur/4vDhw7z66quZCxcuzMrNzX1Ri9Xqi7Oi9TUgSko5UghxA/ALYAKKgfrA01LKt91qqUbjZoQQQWFhYQ/6+/s/NXjw4JAJEyaENmjgwmcxqwVm2+IthbfyQhYYVZyVf6zyDPjHqPaD+z5Qw+0xfeCqhTU7Ucjd7HkXtjx19nL/WFWjtf7t0Pa56uuJLGlbeuQb5S0SBlXoP/QyCGmiQji8Q5RXNaRp5UuEaTQXG1Iqsbr9WRVC1epp9X/upEe1hA0bNvDcc8+lbtu2LSktLe3ZoqKiX6SUVjdZrXEB51WnVQjRBRgMBADLpJRLXG2YRuMphBBe/v7+t4aHh7/YtWvX6Oeeey6iS5cuF3ZQSwGkrFPxlNsmlF4XP0h50BJ/U57C4EbKW9BynBarziAlHJujErNOObT6bng39Pzavec256vP7fhcyDsOIc1Uclu9IWXWeARUGa+Dn6nKB2mbVDxySDNlc8snq6/A1mg8jTlflcvLOQydP1Td3SrR3c5isbBw4UI5efLkVKPRuNNkMk00m83r3GixxoXo5gIaTRkIIYSXl9cVsbGxL4WHh7eZMGFCrdtuu83rvOJeE5bCXzfY5w3+qttKYYoqAeUTpjJao3tDnettiVSh4BNec+IuPYmlAObYBH5JWa0W/1PF9d3Jpv+pRKj4QRDUSA3pm1aqOOCO76hY03OxfqSqXtD4XuVVrd1dda3SQ/0ajR1znvpftuSriiO5R1W8/+Gv1Ppu06DpSKcOlZqayueff17wySefZJvN5iWJiYkv6qpHNQ8tWjUaJxBCxEdHR4/z8vK68+677w56/PHHg+Lj4yvesQQpVaei7c9C7pFzb9PwbkjboGqV2s+sylr5hKmhbt8IVeIprI3qZhTernyP3qXEv0/B3ndVhnCDO6D54+c/lH78R1WRIbJr2UIy9wT82gy6TC39w2nOV125tj4Nl0+DJvefve/B6bDpEfWAIrxUjdn8ROVplxbVUammNz3QaM6H7INq5OLkryrh07FxiXcQBNQFvyhVKaPj2xWGBGzZsoU33ngj/a+//soqKCiYkpmZOV1Kme3ei9C4izJFqxDCSpltbs5CSimdKI6o0dRshBB+gYGBd4aGhk5s27Zt5NixY2v37dsXg8H54SmKs1Ume+p6NTSc9Ica3rppn4pZzE9UIqY4U3liC5KVmLHkq0SdzF3qlZ+g9ou5Frp+rPa9lJESEn9XmfWHpql6tVFXqAYHflEQ3FDFiYa1UQ8CJRz8HDaMsnm441WN2iO2sIJ6Q+HKeaXPs/9jJUgteSqerv9GexhHgQkydkLqBtg2US37j/Vs4Wu1wJ63VJFzsLUBDQdLLux+Qy2LHwRX/qS9r5qLn7yTqkTV8XmqpmpgPVWmqs71KgnV4KeW+UU69f+Qn5/P3LlzLW+//XZ6WlranqSkpMlWq/VPXWO15lOeaH2M8kWrQMW1XoMSrXoMU3NJIYToVLdu3fFeXl597r///uAHH3wwoE6dOq49Sb4Rfo5T3jfvEOVl9fJTLSMD4+D4D5B/Cq6YrbyLGkWBScWamlYrcV+YrGLgClPU+uAmqmVsWBtVDsu0suxjDU0H33D7/NYJdmEZ2gJ8aikBm3tMPWiAChWIvlJ1/Iq7UXlfTSuhIEl9luY8ZU/2AVUfNz+hdKcwUA8j1/7hoj+IRlNN+WuAqv7hE6YqYjQaDrHXVipOtYQdO3YwZcqUzIULF+ZZrdZZycnJU6WUJ9xgtcZDVDo8QAghgDuAZ4DWwBJUOay1rjdPo6n+CCGCg4OD7woODn6yZcuWEU899VTt/v374+3tgsGHgmT4Kbr8bbp+Ck0fOK+b/CVHQQpkbIXUjarubMYOJRiL0rE/owvl+fSPUhUIGt2jwgTCWisvj7QqL/nR2UpwFhjV51SUqry9AD5BynPqV1t5bxN/U6LULwIwqAeP4MZKPIc0V16kkvMF1HXao6TR1GiK0uGHCFV/+pZj51V7Ojs7mzlz5ljef//99PT09H0mk+k1s9m8VEppcYPFGg/jtGgVQnihWrZOAJqgumO9LKXc6i7jNJqahhCifZ06dZ4Ebrj11lv9R40aFdK2bVvXHNxSpIrjp25QXrrMncpLGNkdun8Foc1dc55LEWlVP6B5J1XCR84hFYKRsVP9nc05yitbbzCYVinRailQAjO0JdRqr9Z7+auHB3OeKllWYFIeWOEFHV5X3nGNRqMoyoRfbWXdLhsDdQeoVtQVYLVa+fPPP5k6dWrq2rVr881m89epqakfSylPVYHVGg9SoWgVQvgCI4HxQBwwG3hVSrnH/eZpNDUTIYSvt7f3gOjo6KdCQkJajBo1KvSuQVf7RpvXQVhbJToN3mq4P/kflRVbmKIK5Ie2UK+QZhAQX371gKx98M/dkP6vKjTvF6F+AEKaq4z0gLqq6LZvuEpiEF6A0F68yiCtqlXtoS/h5Hyo0x9i+6lKD4GVSMbTaDRnk3sMNj2uYloBWoxR7Z8teVCYpkoARnQGLz/27dvH9OnTc77//vt8KeVfCQkJ7wHrdKzqpUN5Ma2BwMPAU0AE8DXwupTycNWZp9HUfIQQUeHh4fcGB/qOahptjbune7b/4E6FhDuW4qzVAQLrqx7yWXtV7COoJgR+kUqI+kXaho/rqJdPGPiEKKGb+Dsk/a7EcGW41Qj+FYQfaDQajTsx58GaOyBjG+Q5hKB6BXAsKZ/ZmwLlF+vqpOblFxxMSUn5sLCwcL6UMt9zBms8RXmi1QREAn8BbwLlBjNLKXe72jiN5mJDCNGodmStEb6+Pvc0bdYi6IG7B0XedE17Ed7k2tIbFmdB9iFVHqswRVUTKExVYjY/Ub2Ks8CcraoRIJUnNbCe2t+cp5KPLBXc1wce0FUHNBpN9SEvgWMnTvHjwj+Lvvzq66zMjNSEnOysTzOy8mZLKdM9bZ7Gs1RU8qqEiqoI6OoBGk0lEUK0ql279jBvb+/b4+PjQ4cPHx4+aNAgn0rVfwWV/GMpsMVTnmPY35yvkoXyE8EnWCX/eAe65iI0Go3mApFSsnPnTubNm5c3e/bs3Nzc3FPZ2dkzsrOz50gpkzxtn6b6UJ5ovaoyB5JSllMzRqPRlIcQon5oaOjQ4ODg4QEBAXVuvPFGv4EDB4b26tWLgADdylWjcSWOj3Y6GNIzpKWlsXz5cn766ae01atXW4CdKSkpXxYWFi6UUmZ42j5N9UR3xNJoqhlCiGCDwXBVTEzMbVLKa/z8/AKFTpzSaDQXCRaLBbPZnGI2m39NTk7+GdggpTR72i5N9UeLVo1Go9FoNBpNtafM6udCiA3AvVLK3UKIjVQwiiKl7OZq4zQajUaj0Wg0GihHtAK7gHyHae2S1Wg0Go1Go9F4BB0eoNFoNBqNRqOp9uhm5RqNRqPRaDSaao8WrRqNRqPRaDSaao8WrRqNRqPRaDSaao8WrRqNRqPRaDSaao8WrRqNRqPRaDSaas//A9Fi+7GKGtgDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.rcParams.update({'font.size': 15})\n", "\n", "Z, xedges, yedges = np.histogram2d(np.array(iNat_TRY['decimalLongitude'],dtype=float),\n", " np.array(iNat_TRY['decimalLatitude']),bins = [181, 91])\n", "\n", "data_crs = ccrs.PlateCarree()\n", "#for colorbar\n", "cmap = plt.get_cmap('cool')\n", "im_ratio = Z.shape[0]/Z.shape[1]\n", "\n", "#plot map\n", "fig = plt.figure(figsize=(12, 12)) # I created a new figure and set up its size\n", "\n", "#create base plot of a world map\n", "ax = fig.add_subplot(1, 1, 1, projection=ccrs.Robinson()) # I used the PlateCarree projection from cartopy\n", "ax.set_global()\n", "#add coastlines\n", "ax.coastlines(resolution='110m', color='orange', linewidth=1.3)\n", "#add grid with values\n", "im = ax.pcolormesh(xedges, yedges, Z.T, cmap=\"cool\", norm=LogNorm(), transform=data_crs)\n", "#add color bar\n", "#divider = make_axes_locatable(ax)\n", "#cax = divider.append_axes(\"right\", size=\"3%\", pad=0.05)\n", "#fig.colorbar(im, cax=cax)\n", "fig.colorbar(im,fraction=0.046*im_ratio, pad=0.04, shrink=0.3, location=\"left\", label=\"iNaturalist observations vascular plants\")\n", "\n", "\n", "plt.savefig('Figures/iNat_density_Robinson_TRY.pdf', bbox_inches='tight')\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.11" } }, "nbformat": 4, "nbformat_minor": 5 }